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Abstract

In this paper the problem of solution of ordinary differential equations describing
a steady, gradually varied flow is discussed. It is shown that, apart from the initial
problem usually solved for open channels, the formulation of the boundary problem
is necessary when water levels are imposed at ends of channel. This approach is the
mathematically correct formulation of the solution problem for steady, gradually var-
ied flow equations. It enables us to determine directly the water profile and discharge
for a single channel, as well as for channel network, instead of the trial and error
method usually used. Moreover the formulation of boundary problem with respect to
the Manning coefficient and lateral inflow is presented. To solve the listed problems
the finite differences method is used.

1. Introduction

The different flow problems in open channels are usually analysed using the
Saint-Venant equations, the most general mathematical model widely applied in
hydraulic engineering. In spite of this a solution of steady gradually varied flow
(SGVF) seems necessary in many practical situations. A governing equation de-
scribing this kind of flow can be obtained in a different way (French 1985). SGVF
as a particular case of unsteady flow is described by the equation which can be
derived from the system of Saint-Venant equations. For steady flow this system
can be simplified as derivatives over time do not exist. Consequently we have a
continuity equation in the form of:
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and a momentum cquation as follows:
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where:



24 R. Szymkiewicz

x — longitudinal distance,
Q() ~— discharge,
H(x) - water surface elevation,
q — lateral inflow,
S= f;—lg—f — slope friction, (3)
A(x) - wetted cross-sectional area,
R(x) - hydraulic radius,
n - Manning coefficient,
g - gravitational acceleration,
a — Coriolis coefficient.

In Eq. (2) the term representing the influence of lateral inflow is omitted. After
differentiating its first term one obtains the expression:

Q(ldQ QdA) dH
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which with Eq. (1) can be rearranged to its typical form:
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A discharge Q(x) can be obtained by integration of Eq. (1) over distance:

X
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where r is a dummy parameter.

For SGVF another form of governing equation can be derived. To this order
Eq. (2) is rearranged as follows:

d aQ?
ci_x(H+2gA2)=_S‘ )

Since, the expression in brackets represents the total flow energy E above an
accepted datum, one finally obtains:
dE :
e R 8
Tx (8)

| ‘




Boundary Problem for Equations of Steady ... 25

with 0
[v4
E=H+ 2 A ®
This equation, like Eq. (5), describes a flow profile along the channel axis. A dis-
charge variation is defined as preceding, by Eq. (6).

SGVF in an open channel can be considered as an initial value problem or a
boundary value problem for ordinary differential equations. When discharge Q is
imposed at one end of channel and lateral inflow gis given, an initial condition
H(x =x9) = Hp should be known to compute H(x) for x > xo by integration
of Eq. (5) or Eq. (8). The problem formulated in this manner is a so-called
initial problem for an ordinary differential equation. A typical example of its
application in an open channel hydraulics is determination of the backwater effect
due to a dam. The computation of SGVF is usually carried out by standard-step
method (Chow 1959) or by numerical integration of governing ordinary differential
equation (Chaudhry 1993). The results obtained in each way are almost identical
(Schulte and Chaudhry 1987). It is obvious as it can be shown that both approaches
are equivalent.

While the solution of an initial problem for SGVF in a single channel is trivial,
it becomes more complicated in a channel network. The approach using a dis-
crete energy equation was presented by Schulte and Chaudhry (1987) for a looped
network. This method corresponds to the standard step method (Chow 1959) for
a single channel completed by continuity and energy equations at the junctions.
Recently, Naindu, Murty Bhallamudi and Narasimhan (1997) have proposed a
procedure basing on the governing differential equation in its standard form i.e.
without lateral inflow and with depth as a dependent variable. An analysis presen-
ted by these Authors shows that the presented method is computationally more
efficient, but it can be used to compute the water surface profile in tree-type
channel networks only.

Apart from an initial problem for SGVF equations, it seems useful to formu-
late a boundary problem. This approach enables to solve some flow cases directly
instead of the usually applied trial and error method, though in a general case
it is possible that the boundary problem has no solution. Let us consider SGVF
in an open channel of length L connecting two reservoirs with different but time
constant water levels (Fig. 1). In this case the function H(x) should satisfy the
governing equation and imposed conditions at upstream and downstream ends of
the channel defined by water levels at the reservoirs. Moreover, the discharge Q is
unknown. The problem formulated in this manner is a two points boundary prob-
lem for a system of ordinary differential equations (1) and (5) or (8) describing
SGVE. The same problem can be formulated for a channel reach bounded by two
control stations. If during SGVF the water levels are recorded in these stations
and the Manning coefficient is known, the determination of the flow profile H(x)
and discharge Q for the considered channel reach is also a two points boundary
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problem. A similar approach can be formulated to determine the flow profile and
Manning coefficient n or lateral inflow g.
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Fig. 1. Channel connecting two reservoirs

Very often the problems presented above are solved by integrating the equa-
tions of unsteady flow with the time constant boundary conditions (the constant
water levels imposed at the upstream and downstream ends and time tending to
infinity). This approach can be applied for a single channel as well as for channel
network. Cunge et al. (1980) showed that the discretized system of Saint Ven-
ant equations for a steady flow does not correspond to the discrete form of the
SVGF equation. Consequently the difference between the results calculated by
the methods mentioned occurs.

To solve the boundary value problem for SGVF a shooting method can be used
(Stoer and Burlisch 1980). It consists of successive solving of the initial problem for
an SGVF equation with the initial condition H(x= 0) = Hp and determining the
values of Q for which the condition at boundary x = L is satisfied. Unfortunately
it can be used for a single channel only.

In this paper the solution of the boundary problem by the finite differences
method is presented. Consequently one obtains an alternative approach to de-
termine a flow profile H(x) and discharge Q (or Manning coefficient or lateral
inflow) directly for a single channel, as well as for tree type and looped network
when at the channel’s ends the water levels are imposed.
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2, Determmatlon of Water Profile and Flow Discharge for a Channel
Connecting Two Reservoirs

As an example of a solution of the two points boundary problem, SGVF in a
hypothetical channel connecting two reservoirs is considered (Fig. 1). This kind
of flow has been investigated by Chow (1959), who solved it using a delivery curve.

There are some methods of solving the boundary problem for the ordinary
differential equations (Bjorck and Dahlquist 1974). In this paper the difference
method is applied. The channel of length < 0, L > is divided by N nodes into
N —1 intervals Ax;. To avoid the difficulties occurring when the flow becomes
critical it seems better to use Eq. (8) instead of Eq. (5). Neglecting lateral inflow
Eq. (1) and Eq. (8) are approximated at the middle of each interval x; + Ax;/2
by a centered difference, coinciding with the implicit trapezoidal rule:

Qis1— Qi Eihz—-E; 1
= =0, ———-4+=(S; ir1) = 10, 11
Ax; s Ax; +2( +S:+1) 0 ( )
where:
i - .indcx of cross section,
Ax; - length of interval number i.

It results from Eq. (10) that only one unknown value of Q exists as Q; = Q;41 =
Q = const. Introducing the energy E and the friction slope § defined by expres-
sions (9) and (3) into Eq. (11) yields:
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Eq. (12) is well known the discrete energy equation usually applied to calculate
water profile in natural channels (Chow 1959). Note, that it is simply the SGVF
equation (7) numerically integrated by the implicit trapezoidal rule. Similar equa-
tions can be presented for each interval Ax; (i =1,2,..., N —1). In this manner
one obtains a system of N — 1 algebraic equations, in which N + 1 unknowns oc-
cur. There are N water levels H; at nodes and flow discharge Q. This system has
to be completed by two additional equations resulting from imposed boundary
conditions. Assuming a subcritical flow in the channel, the following conditions
should be imposed at the ends of the channel:

aQ?

E(x=0= Hl-l—ZgAz—Hu, Ex=Ly=Hy=Hy (13a, b)

where:
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H, H; - theimposed water levels at upstream and downstream reser-
voirs respectively,

Hy, Hy - thewater levels at upstream and downstream ends of channel
respectively.

As discharge Q is unknown the established boundary problem has a nonlinear
boundary condition.
The final system of equations can be presented in the matrix form:

AX=b (14)
where:

— matrix of coefficient,
= (H,,0,..., H, 0T — vector of the right hand side,
= (HI- H2| sy HN—ll HNl Q)T

vector of unknowns,

~N T n

— transposition symbol.
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Fig. 2. Structure of A matrix (e — non-zero entry)

The matrix A of dimensions (N + 1) x (N + 1) is very sparse. Its structure is
presented in Fig. 2 and its non-zero elements are defined as follows:

aQ
dids i =5 @ = 15a, b
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fori =2,3,..., N—1,
aNN=1, (15f)
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aQ aQ  Axya [ n?lQ n?|Q|
a N+ N+1=— + . (15g)
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This system of nonlinear algebraic equations should be solved by iterative method.
The Newton method needs the determining of the Jacobian matrix in which some
elements have to be calculated numerically when a natural channel is considered.
In addition very often the Newton method does not ensure convergence. To avoid
this, the following method is proposed:

AXED — p (16)
where:
k — is the iteration index.
AXKH! = Xkt1 _ xk — is correction vector
f* = A¥X* - b — is vector of residuals in Eq. (14)
X® 4 xtk-1)
A* = A(—‘%—— - is modified matrix in Eq. (14)

For k =0 Ax = A(X(0)) is recommended. This, similar to the Newton method,
has been derived by modification of the Picard method. After accepting the first
estimation of the unknown vector X'?, the iterative process is continued until two
succeeding solutions satisfy the following criteria for convergence:

e Xf.’ﬂ‘ <egfori=1 Nand X%V - X0 l<eg  (17,18)

where: ey and eg represent the specified tolerances for water level H; and dis-
charge Q respectively.

In each iteration the system of linear algebraic equations is solved by the LU
decomposition method using non-zero elements of matrix A* only.

To demonstrate the method presented the solution of SGVF in idealised chan-
nel is analysed. The length of the channel is L = 5000 m, the bed slope s = 0.0005,
the cross-section is trapezoidal with 10 m of bed width and side slopes 1:1. The
Manning roughness coefficient is » = 0.030. The channel is divided by N = 51
nodes into 50 intervals of the constant length Ax = 100 m. The bed elevation
above a datum changes linearly from z(x = 0) = 5.0 m at the upstream end to
z(x = L) = 2.5 m at the downstream end.

As shown by Chow (1959), the form of flow profile H(x) depends on the rela-
tion between the water levels in the reservoirs and the normal depth hj,. At first,
similar to Chow, a head velocity at the upstream boundary is omitted. Therefore
at the upstream reservoir, as well as upstream end of channel the constant stage
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H;, = H, = 10.0 m, is accepted. It corresponds to the depth A, = 5.0 m. Calcula-
tions have been performed for the following stages at the downstream end: Hy
= Hy; = 8.75 m and 6.25 m. They correspond to the depths iy = 6.25 m and hy
=3.75 m. The results of computation are presented in Fig. 3. The shape of flow
profiles agree with the results obtained by Chow (1959). The calculated flow dis-
charge for Hy = 8.75 m is 102.24 m3/s whereas for H; = 6.25 m it is Q = 123.07
m¥/s.
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Fig. 3. Flow profile in a channel with subcritical flow and constant H, without head velocity
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Next calculations have been performed for the same data, but including a
head velocity. Therefore, the boundary condition at the upstream end was in the
form of Eq. (13a). The obtained head velocity at the upstream end of the channel
(node 1) is 0.092 m for H; = 8.75 m and 0.134 m for Hy = 6.25 m whereas the
calculated flow discharges are Q = 98.022 m?/s and 117.129 m%/s respectively.

The computations performed showed great efficiency of the proposed method.
Irrespective of the first estimation of the flow profile and starting value of dis-
charge Q a solution with a tolerance of e = 0.0001 m and £g = 0.001 m?3/s was
obtained after several iterations for both types of boundary condition at the up-
stream end.

3. Boundary Problem for an Open Channel Network

Consider the channel network as in Fig. 4. Subcritical flow in all arms is assumed.
All trapezoidal channels are divided into 10 reaches of constant length. The char-
acteristics of accepted network are presented in Table 1.

The bed elevation at the upstream end (node 1) is 10.000 m, whereas at the
downstream end (node 77) it is 9.000 m. The total number of nodes is N = 77.
As boundary conditions the water levels at upstream (1) and downstream end (d)
of the network are specified: H; = H,, Hy = H; (Fig. 4). The water levels at all
internal nodes, as well as the discharges in all channels are unknowns.
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Fig. 4. Considered channel network

Table 1. Channel characteristics for network

Channel | Length | Bed width | Side slope | Bed slope n Reach
[m] [m] [m]
1 400 5.0 1.5 0.001 0.030 40
2 300 3.0 1.5 0.001 0.035 30
3 400 3.0 1.5 0.001 0.035 40
4 300 2.0 1.5 0.00033 0.025 30
5 400 3.0 1.5 0.0005 0.035 40
6 300 3.0 1.5 0.00033 0.035 30
7 400 5.0 1.5 0.0005 0.030 40

For each channel, a set of 10 equations in the form of Eq. (16) can be established.

—
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>

Fig. 5. Junction of three channels: I, J, K

The global system for a channel network consists of subsystems describing each
channel individually. We therefore have 70 equations whereas the number of
unknowns is equal to 82 (77 nodal values of water levels and 7 values of channel
discharges completed by 2 boundary conditions). To close the global system of
equations the additional relations should be introduced. Namely, at the junction
of three channels I, J, K formed by nodes i, j, k (Fig. 5) the continuity equation:

Qr=Qs+Qk (19)

as well as the energy equation:
o 07 o« 0%

2
@O H + = Hy +

H; + =
2647 m A 28 A

(20)
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can be written. In the above equation the losses are neglected. Sometimes the
velocity heads can also be omitted being relatively small.

For 4 junctions of the considered channel network 4 equations in the form
of Eq. (19) and 8 equations in the form of Eq. (20) enable the global system of
equations to be closed. The matrix of this system contains 7 submatrices describing
each channel in the form presented in Fig. 2. They are connected by the equations
for junctions. Finally the matrix obtained is banded and very sparse. Each row
contains three (or four when the energy equation in the form of Eq. (20) is
used) non-zero elements only. The accepted boundary conditions were as follows:
H, = 11.500 m, Hy7 = 10.500 m. The results of calculations are presented in Table
2. The numerical experiments show that irrespective of the first estimation of flow
profiles and discharges in channels, the solution with tolerances ey = 0.0005 m
and eg = 0.0005 m?/s was obtained after less than 20 iterations. Because the
applied subroutine solving a linear system of equations uses non-zero elements
only the final algorithm is computationally very efficient.

Table 2. Results of solution for considered network

Channel | Discharge | Upstream water level | Downstream water level
[m?/s] [m] [m]
1 11.709 11.500 11.113
2 6.093 11.142 10.958
3 5.616 11.147 10.963
4 0.795 10.981 10.979
5 5.298 10.964 10.813
6 6.412 10.958 10.805
7 11.709 10.785 10.500

The relatively small computer storage required by this algorithm, as well as
small time consumed by iterative process, ensures fast computing of SGVF even
for complex networks using PC.

4. Determination of Flow Profile and Manning Roughness Coefficient or
Lateral Inflow

In the preceding case the flow profile and discharge were unknowns. It is possible
to establish another boundary problem accepting Q as known. If the Manning
coefficient n is known also the boundary problem is overdetermined and in gen-
eral there is no solution for the arbitrary value of n. However, for certain special
values of n Eq. (8) does have a solution. It is possible to reduce this problem
to the standard case by introducing a new dependent variable n = const. Con-
sequently, we can add another differential equation for a channel reach satisfied
by n. Therefore, for the accepted discharge Q the following equations should be
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solved:
dn _o dE_
dc = dx
to obtain the value of coefficient n and function H(x) satisfying the imposed
boundary conditions. This trick is often used solving two points boundary value
problem (Press et al. 1992).

To present this problem an experiment was carried-out (Geringer 1997). In a
rectangular flume SGVF was reproduced (Fig. 6). The length of the flume was
L =10 m, width B = 0.385 m and bed slope s = 0.0005. The measurements and
calculations were performed for the reach of length L = 8 m, which was divided
into 16 intervals of length Ax = 0.5 m = const. Knowing recorded flow discharge
Q and the depth at both ends, it is possible to determine a flow profile and Man-
ning coefficient n by solving a boundary problem. To this order some modification
of the described algorithms is needed because now Q is imposed and n is unknown.

-8 (21a, b)

Fig. 6. View of channel used for study of a steady varied flow

In this case the elements of matrix A, and the vectors X and b occurring in
Eq. (16) should be changed. The vector X has the following form:

X = (Hy, Hy, ..., Hy,n)T. (22)
The elements of matrix A are defined as follows:
aj1=1, (23a)

g =1, @ i1=-1 fori=23,...,N—-1, (23b, c)

Ax;_1 ( nQ? - nQ?
2 4/3 43
RE—IA%—I ' A;':

]

aiN+1 =

) fori=2,....N—1,  (23d)

aNN = 1. (236)
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4/3 4/3
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Whereas vector b = (b1, b2, ..., by, bns1) T has the elements:

bl=Hu,
2 2
bi= aQZ i aQZ fOl‘i:Z,...,N—l.
2047, 284
bN=Iif1
C\!Qz an
bNy1 =

20 4%, 2gA4%

The iterative process is stopped when

(23)

(24a)
(24b)
(240)

(24d)

H*D _H®| < ¢y fori=1,...,N and ‘n("‘“) —n(k)’ <en (25a,b)

where ¢, is the specified tolerance for Manning coefficient.

The recorded flow parameters are as follows: Q = 0.0375 m3/s, H, = 1.314
m, Hy = 1.309 m. For accepted g = 0.0001 m and &, = 0.001 the method needs
only several iterations. Note, that any starting value of n'® ensures a solution of
Eq. (21). This indicates the unconditional convergence of the iterative process.
The differences between the observed and calculated water levels, presented in
Fig. 7, do not exceed 0.002 m. The computed Manning coefficient is n = 0.0201.

H ‘r
[m]
1.300 -
—— calculated
1.200 -+ * observed

Q""O. 0375 m:’,s

\_\_\_-’
1.100

1,000 {%

 x m]

1 I T T T T T T

0 1 2 3 4 5 6 7 8

=

Fig. 7. Comparison of calculated and observed water levels in a channel
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The same problem was solved for another set of data namely Q = 0.0137 m?/s,
H, = 1.248 m and H; = 1.247 m giving the value of n = 0.019. Also in this case
the differences between the calculated and recorded water levels do not exceed
0.002 m.

The boundary value problem can be established as well as when a lateral inflow
q, considered as constant, is unknown. In this case a discharge at one end of the
channel and the water levels at two ends should be imposed. To calculate a lateral
inflow g and flow profile the following system of equations should be solved:

dg_, dE_
dx =1 gx =

With variable Q Eq. (12) for any channel reach of length Ax; takes the form:

2 2 202 20)2
o QF aQf  Ax; [ Qi n*Q;
Hi+o—5— =H+—5 - 4/3 + = (27)
28 42, 24 2 \RLa, R°a
where: Q;, Qi1 — discharges in node i and i + 1 respectively.

When the lateral inflow is assumed as constant over channel the discharge at
the nodes can be expressed as follows:

Qi = 01+ Li-ig, (28a)
Qiy1= Q1+ Liq (28b)

i-1 i
where: Li—l = Z ij, L, = Z ij',
Q1 - imposed discharge at the upstream end (node 1).
For the discharge imposed at the downstream end the expressions for Q; and
Qi+1 should be changed respectively. Introducing Eqs. (28a,b) into Eq. (27) gives
the following expression:

9 (26a, b)

o« G+201Lig+1E > a QF+201Lg + g

—H; + Hiyy — — + ~
f i+1 2g A‘.z 2g A:'2+1 29)
_'|_n2Ax,- Q% +201Li1g + L,'z_ﬂz " n?Ax; Q% +20:1Liq + Lizqz —0 (
2 4/3 2 4/3 -
e R A
Presenting similar equations for all reaches i = 1,2, ..., N — 1 one obtains a

system of nonlinear algebraic equations. Its solution with imposed water levels at
upstream and downstream ends gives the water profile H(x) and lateral inflow g.

As an example of the application of the presented algorithm, SVGF in a
single channel is considered. Its cross section has trapezoidal shape with bed with
b =20 m and side slope 1:1. The length of channel is L = 9300 m, bed slope
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is s = 0.0005 and Manning coefficient is n = 0.035. At the upstream end depth
h, = 3.0 m and discharge Q, = 15 m%/s were imposed whereas at the downstream
end depth Ay = 4 m was accepted. The tolerance for water levels was e = 0.0005
m and for lateral inflow &; = 0.000001 m?/s/m. After 14 iterations the calculated
lateral inflow was g = 0.000245 m?/s/m giving a discharge at the downstream end
Q4 = 17.28 m?/s.

The boundary problem with respect to the Manning coefficient or lateral in-
flow, can be formulated for channel network also. However, it is possible to solve
this only when a constant value of n or ¢ is assumed for all branches and addition-
ally a discharge at one end is imposed. If each channel has different roughness or
lateral inflow, it is impossible to solve this problem directly for to many unknowns
comparing with the number of equations which can be established.

5. Conclusions

To determine a flow profile for a steady gradually varied flow when water levels are
imposed at the ends of a channel, a boundary problem should be formulated for
the governing equations. The presented approach, enables direct calculation of the
unknowns flow parameters instead of the trial and error method usually applied.
Application of the finite difference method to solve a boundary problem leads
to a non-linear system of algebraic equations with sparse matrix. The proposed
method of its solution ensures unconditional and relatively rapid convergence
of the iterative process. Its coupling with solver of linear system using non-zero
clements only gave a very effective algorithm. The proposed approach can be
applied for a single channel, as well as for a tree-type or looped network.
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