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Abstract

Real-time forecasting of high water levels at the mouth section of the Odra river
is important for the safety conditions of shipping, shipyard works, river banks pro-
tection, flood control and overall management of aquatic environment in the area.
While numerical hydrodynamic models offer one possible solution, such models re-
quire forecasting of all boundary conditions and forcing data, calibration of model
parameters and are often too complex and time consuming. These models are not
very suitable for real-time forecasting where fast solutions are required to provide ad-
equate lead time. Simpler approaches offered by artificial intelligence methods such
as artificial neural networks and fuzzy rule-based systems are thus becoming more
attractive and promising alternatives. These methods provide a fast, sufficiently good
and low-cost solution. In this paper, an application of Adaptive-Network-Based Fuzzy
Inference System (ANFIS) is presented for real-time forecasting of water levels at
Police on the mouth section of the Odra river.

Notations
A - Fuzzy set
ANFIS - Adaptive-Network-Based Fuzzy Inference System
ARMAX - Autoregressive Moving Average with eXogeneous input
ARX - Autoregressive with eXogeneous inputCCF Cross-Correlation
Function
d — Pure time delay of the system
DC — Determination coefficient
FIS - Fuzzy Inference System
h — Water level
k - Prediction horizon
m — Order of exogeneous input

MPE — Mean percent error
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n — Order of autoregressive input
O,y — Output

P — Atmospheric pressure
PBIAS — Percent bias

RMSE — Root mean square error
u,v, W — Wind speed

w - Firing strength of rule
X -~ Input

o — Consequent parameters
" — Membership value

7] — Regressor vector

1. Introduction

Real-time forecasting of high water levels at Police, Swinoujécie and other places in
the mouth section of the Odra river is very important for flood control, river banks
protection, safety conditions for shipping, shipyards work and overall management
of water systems in the region.

The mouth section of the Odra river has strong sea influence on water levels
and flows. The sudden high increases of water surface in the sea during the passage
of a low atmospheric pressure area (cyclone) over the region generates the so-
called “storm tides”. These barotropic waves propagate upstream in the river
network and significant increase in water levels occur resulting in widespread
flooding and destruction of the shores of Szczecin bay.

Usually the storm tides are accompanied by northerly winds. West winds (N'W,
W, SW) are predominating, however, the strongest blow from the north. South
winds are minimal. In Szczecin area, one may notice a clear wind canalization
concentration along river valley and an increase of wind velocity above the river
with respect to velocity over lands (Meyer 1995).

These winds produce additional effects, so-called wind backwaters. It also res-
ults in increase of water levels. The phenomenon of wind backwater occurs when
water flowing down encounters the wind blowing against it and in consequence
wind shear stress at surface takes place. The surface flow velocity and mean flow
velocity in the river decreases. In order to maintain a constant flow, the water
depth increases. Intense wind may sometimes result a surface back stream flow.

The effect of astronomical tide is negligible. However, the passage of a low
atmospheric pressure system accompanied by strong winds (N, NW) generates
storm surges. The rising waves due to storm surges produce most frequently much
higher and more dynamic changes of water levels and outflows in the river network
of Odra than the passage of a typical flood wave from an upstream section of the
river.
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Simplified analytical formula for quatitative description of water level changes
depending on atmospheric pressure changes can be found in Meyer and Ewer-
towski (1996a, b). Meyer and Ewertowski (1996a, b) have proposed different mod-
els of atmospheric pressure changes such as the step function model, exponential
model of pressure distribution and general function of atmospheric pressure dis-
tribution. Using these functions, solution for water level changes and flow velocity
can be obtained in a straight channel. However, these analytical models are not
very suitable in real cases where a numerical hydrodynamic model is mainly used.

The numerical hydrodynamic model for the Odra river network which in-
corporates the influence of air pressure changes in time and space and wind
shear stress at the free water surface, has also been developed at the Technical
University of Szczecin. This model needs initial conditions, boundary conditions
(water level at downstream and discharge at upstream), wind field data and at-
mospheric pressure changes. The two model parameters i.e. Manning’s coefficient
and wind drag coefficient, should be determined by model calibration. This model
is very useful to calculate the water levels and flows at different time and space
in all cross-sections for every branch of the Odra river network. However, this
model is not very suitable for real-time forecasting of water levels, as it requires
forecasting of all boundary conditions, wind field data and atmospheric pressure
changes to carry out the forecast forward in time and is very complex and time
consuming.

Artificial intelligence methods such as artificial neural networks and fuzzy rule-
based systems are offering promising alternative for such real-time forecasting and
control problems. The domain of artificial intelligence is gradually entering in the
field of water resources management. The main advantage of these techniques
is that they can be set up in considerably less time and the model response can
also be obtained fast, thus reducing the cost. Although these models give little
insight into the physical processes, they provide a sufficiently good, low-cost solu-
tion. Another advantage of these methods is that they are extremely effective
on handling dynamic, non-linear and noisy data, especially when the underlying
physical relations are highly complex and not fully understood. These methods
offer a more flexible, less assumption dependent and self-adaptive approach to
modelling complex, non-linear and dynamic systems. Moreover, these models rep-
resenting complex, empirical part can be plugged into the conventional numerical
models thus resulting in a hybrid model (See and Openshaw 1998, Boogaard and
Kruisbrink 1996).

The application of artificial neural networks and fuzzy rule-based systems as a
modelling tool in the field of hydrology and hydraulics is a relatively new area of
research, although some studies have already been conducted to some extent in
the field of hydrology and these studies have generated considerable enthusiasm.
Intensive research has been carried out by Minns (1998), and Minns and Hall
(1996) for the modelling of rainfall-runoff processes by applying neural networks.
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Until now, artificial neural networks have been applied for rainfall modelling
(Luk et al. 1998, French et al. 1992), derivation of unit hydrograh (Lange 1998),
modelling of time series (Gautam and Boogaard 1998), urban runoff prediction
(Sincak et al. 1998), estimation of annual runoff (Sajikumar and Thandaveswara
1996), real-time flash flood forecasting (Khondker et al. 1998) and regional flood
frequency analysis (Hall and Minns 1998).

This paper considers the application of hybrid neuro-fuzzy approach for real-
time forecasing of water levels. The proposed approach is explained in more detail
in Section 2. Sections 3 and 4 describe the case study and present the results from
an application to data from the station Police at the mouth of the River Odra in
Poland. Some conclusions are presented in the final Section.

2. Adaptive-Network-Based Fuzzy Inference System

Adaptive-Network-Based Fuzzy Inference System (ANFIS) is a hybrid neuro-fuzzy
system for function approximation proposed by Jang (1993). It is a fuzzy infer-
ence system implemented in the framework of adaptive networks and represents a
Sugeno-type fuzzy system in a special five-layer feedforward network architecture
(Fig. 1). In Sugeno-type fuzzy system, the output of each rule is a linear combin-
ation of input variables plus a constant term, and the final output is the weighted
average of each rule’s output. The rules are of the form:

R:IxiisAD AL Axp is A then y, = el +al% +...... + ag)xp (1)

ANFIS provides an effective method for tuning the membership functions.
The rule base itself should be generated either directly from expert knowledge or
from data or by a combination of both. To generate the rules from observed data,
a clustering method such as subtractive clustering can be employed (Chiu 1994).
Subtractive clustering is an efficient method for estimating the cluster centers
which can be used as the basis for identifying initial fuzzy inference system (FIS)
for ANFIS training. It considers each data point as a potential cluster center and
calculates the measure of potential for a data point based on its distances to all
other data points. A data point with many neighbouring data points will have a
high potential value. After the potential of every data point has been computed,
the one with the highest potential is selected as the first cluster center and the
potential of each data point is revised by subtracting an amount of potential from
each as a function of its distance from the first cluster center. Then that with
the highest remaining potential is selected as the second cluster center and the
potential of each data point is further reduced according to its distance from
the second cluster center. The process is repeated until all cluster centers have
been found (see Chiu 1994). The value of cluster centers can be used to define
Gaussian type membership function for the rule‘s antecedent part and the rule’s
consequent part can be determined by least-squares estimation method. In this
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Fig. 1. Structure of ANFIS (adopted from Jang 1993)

way, an initial fuzzy inference system for ANFIS training can be obtained. ANFIS
then adjusts only the parameters of membership functions of the antecedents and
the consequent.

The ANFIS network structure contains p input units and five layers. Each
node in the first layer (L) is a square (adaptive) node and stores the parameters
of membership functions associated with each input. The number and type of
membership function must be specified or can be generated using subtractive
clustering. Commonly used membership functions are Gaussian curve, generalized
bell shape, sigmoidal, triangular and trapezoidal membership functions. Each node
is connected to exactly one input unit and computes the membership degree of
the input value obtained.

Each node in the second layer (L;) denoted by I1 in Fig. 1 is a circle (fixed)
node which multiplies the degrees of membership to determine the degrees of
fulfilment (firing strength),w, for the rule represented by R,, i.c.,

Wy = “‘Ag’) X ].LAg) X i G i X ,U,Ag) (2)

Each node in the third layer (L3) denoted by N in Fig. 1 is a circle node and
is connected to all the rules in the second layer and computes the relative degree



8 D. K. Gautam, K. P. Holz, Z. Meyer

of fulfilment (also known as normalized firing strengths) for each rule R, given
by
Wy

T = o | (3)

Each node in the fourth layer (L4) is a square node and is connected to all
input units and to exactly one node in the third layer. Each node computes the
output of a rule R, by

O, =w,.y, = W,. (ag) + a{’)xl +o + a},’)xp) (4)

An output node in the fifth layer (Ls) is a circle node and computes the final
output by summing all the outputs from the fourth layer, i.e.

Zwr_Yr
0= 0= Wy =~ 3
E i Zr: r¥r Ewr ( )

ANFIS applies a combination of the least-squares method and the back-
propagation gradient descent method for training membership function paramet-
ers. Backpropagation is used to learn the antecedent parameters, i.e. the member-
ship functions parameters, and least-squares estimation (LSE) is used to determ-
ine the coefficients of the linear combinations in the rules’ consequents. Detailed
description of training algorithm can be found in Jang (1993), Jang et al. (1996),
Nauck et al. (1997).

The learning procedure suggested by Jang has the following steps (Nauck et
al. 1997):

1. Propagate all patterns from the training set and estimate the optimal con-
sequent parameters by an iterative least mean square procedure while keep-
ing the antecedent parameters fixed.

2. Propagate all patterns again and modify the antecedent parameters using

backpropagation while keeping the consequent parameters obtained before
fixed.

3. If the error measure undergoes four consecutive decreases, then increase
the learning rate by 10%. If the error measure undergoes two consecut-
ive combinations of an increase followed by a decrease, then decrease the
learning rate by 10%.

4. Stop if the training error goal is achieved or the designated number of
training epoch is reached, otherwise continue with step 1.
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3. Study Area and Data

The Szczecin region is situated in the north-western part of Poland in the mouth
section of the Odra river along the Baltic coast. Szczecin city is an important
industrial and port city. It has free access to the sea from the north. The Odra
river supplies water to the industrial plants and also serves as a communication
and transportation track. The Odra is a navigable river on a 717 km long section,
connected through the Warta, Note¢ and Bydgoski canal with the Vistula and
through the Odra-Spree and Odra-Havel canals with the German river network.
Total catchment area of the Odra river is 118611 m?, with 105961 m? in Poland
which is 89.3% of the total area. The total length of the river course is 866.2 km
and the length of the section of the Swinoujécie-Szczecin fairway is 27 km. Figure
2 shows schematically the mouth section of the River Odra.

The water levels, atmospheric pressure changes and wind field data were ob-
tained for the stations Police and Swinoujscie from the Maritime Institute Branch
Szczecin, Poland. The time resolution of these measurements is 10 minutes.

It has been shown from a previous study that the seasonal changes are observed
in annual wind distribution. There are more slow north winds during summer. In
spring and autumn, wind conditions are extremely diversified. The strongest winds
appear in the winter season from the north-western sector. These winds are the
reason for storm surges arising in the sea, which propagate upstream the Odra
river and thus cause the wind backwater (Pluta 1998). Based on this fact, the winter
season (Jan.-Mar.) data for 1996 and 1997 were taken for this study. The data set
were divided into training, checking and test subsets. January and February, 1997
data were chosen for training the model and March, 1997 data were provided as
the checking data set to prevent model overfitting. February, 1996 data were used
for testing the model’s performance. The statistical characteristics of the target
(output) vectors for each data set are given in Table 1.

The statistical characteristics of the test set suggest that it contains extreme
high water levels with high degree of variability (standard deviation). Hence, the
model should extrapolate to estimate these extremes.

Table 1. Statistical characteristics of target vectors

Data set Number of | Mean | Standard | Maximum | Minimum
patterns deviation
Training set 8478 495.61 17.03 555.10 458.90
Checking set 4446 515.94 14.36 540.90 468.70
Testing set 4086 518.98 23.56 592.20 487.30

The correlation analysis was performed on the training set data to evaluate the
correlation of water levels at Police with the atmospheric pressure changes and
wind speeds. The wind direction was implicitly taken into account by resolving
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the wind speed into two components, u = W.cos¢ and v = W.sin ¢, where W is
the wind speed and ¢ is the wind direction. Table 2 shows the cross-correlation
functions of water levels at Police with atmospheric pressure (P) and wind speed
(u, v) for training set data.

Table 2. Cross-correlation function (CCF) of water levels at Police with different inputs

Inputs P u ]
Instantaneous CCF | —0.0848 | 0.1491 | —0.0321
Maximum CCF —0.6482 | 0.1971 | 0.2297
Lags 274 77 —187

The autocorrelation function (Fig. 3) of the water levels at Police for Jan.-Feb.
1997 shows that the water levels are highly autocorrelated and the autocorrela-
tion function is exponentially decaying indicating the persistence and low order
autoregressive process.

T
'
'
H
1
)
H
f

-
1
T
'
3t
]
1
v
*
i

R e e

lpceenpadacenccadacanas

*
e T T

Fig. 3. Auto-correlation function of the water levels at Police

Table 2 shows that the water levels at Police are strongly and negatively correl-
ated with the atmospheric pressure with peaks at lags 274. The significant cross-
correlation functions for positive lags indicate that passage of low pressure causes
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storm surges. A similar analysis for N-S component of wind speed at Police (1)
shows that the water levels have a fair positive correlation with wind speed with
peaks at lags 77 indicating that increase in wind speed causes a rise in water level.
At extreme individual events of storm surges, the correlations are even greater.

4. Application of ANFIS

There are two approaches to building the prediction model for the purpose of
multistep prediction of water levels at Police. The first approach consists of train-
ing the model for the purpose of one-step prediction and using it in a recurrent
form by feeding back the predicted output as an input for the next prediction. The
main disadvantage of this approach is that the parameter set has been obtained
with the purpose of one-step prediction. During the training phase, the model
captures the relation between the actual observations of the original time series.
However, when the model is used for multistep prediction by feeding back the
predicted outputs of previous time steps, the errors which occur for the predicted
outputs are propagated and the quality of the future prediction will be affected by
them. The number of predicted outputs required to feed back as the input is given
by the prediction horizon value. Therefore, the accuracy of future predictions may
decrease when the prediction horizon is increased.

The second approach consists of training the model to predict directly the
value of the k-step ahead from the information available at the time, where k is
the prediction horizon. Hence, the inputs to the model are measured time series
values and no outputs of the model must be fed back into the input. Thus, the
problem concerning the propagation of errors disappears when this approach is
used as a multistep prediction scheme. In this case, the model can be written as
follows:

Regressor vector:

ot +k)=[h)...... hit —n+1) Pt —-di+1...... Pit—dy—m;+2) 6)
u —d+ 1) ...ut—dz—my+2) v(t—d3+1)...v(t—-d3—m3+2)]T

Predictor: X
h(t +k|0) =g (gt + k), 0) (7)

where g is the nonlinear function realised by a fuzzy rule-based system, 6 repres-
ents the parameters of the rules antecedent and the consequent, » is the order of
the autoregressive input, my, ..., ms are the order of the exogeneous inputs and
dy, ..., ds are the pure time-delays.

A disadvantage of this approach is that the inputs to the model may not contain
sufficient information about the time series in order to predict that instant. That is,
the input vector may be very distant in the time from the prediction horizon, and it
may not have any relation with that instant. In this case also, the accuracy of future
predictions decreases as the prediction horizon increases. Another disadvantage is
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that the same model cannot be used for different values of k and thus a separate
model must be constructed for each k-step prediction.

In this application, the second approach was employed. The input vector may
consist of present and past values of water level and several delayed values of
atmospheric pressure and wind speed at Police and ouput vector consists of water
level at Police at the time ¢ + kAt. The forecast lead time given by kAt depends
on the practical requirements such as to issue warning and take necessary safety
measures. To evaluate the degree of accuracy of forecast for different prediction
horizons, k£ was varied from 18 (3 hours) to 144 (24 hours).

Since the training set data were not of the same order of magnitude and had
different units, all data set were normalized prior to analysis so that they will have
zero mean and unity standard deviation i.e. the scaled value was then given by

_%ip = Xp

Yip = o (8)
where X, and o, are the mean and standard deviation of the p variable. These
normalized patterns were employed for training the ANFIS. After the ANFIS
were used for prediction, the ANFIS outputs were converted back into the original
units.

Fuzzy Logic Toolbox version 2 for MATLAB (1998) was used for the exper-
iment. The order of the regressor vector was taken asn =1, m; =m; =mz = 1
and dy = d; = d3 = 1, which gave the simplest possible model with a small num-
ber of parameters. Increase in order of the model did not significantly improve
the performance. Instead, it leads to a complex model with a large number of
parameters and high computation time. An initial fuzzy inference system (FIS)
was generated for ANFIS training by first implementing subtractive clustering on
the data to determine the number of rules and antecedent membership functions
and then extracting a set of rules that models the data behavior (Chiu 1994). The
cluster center’s range of influence in each of the data dimensions was specified to
0.5 i.e. each cluster center will have a spherical neighborhood of influence with
0.5 times the width of the data space.

Then ANFIS was used to fine tune the parameters of membership functions
of the antecedents and the consequent with initial learning rate of 0.01. Training
was done until either the training error goal (0.0) was achieved or the designated
number of training epoch (10) was reached. A checking data set was provided
to prevent model overfitting so that the ANFIS returned the simplest possible
trained model which will have minimum error in both training and checking set.

3-hour forecast:

An initial fuzzy inference system (FIS) was generated for 3-hour forecast by
implementing subtractive clustering which resulted three sets of rules with a three
Gaussian membership function for each input for the antecedent part of the rule.
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Fig. 5. Scatterplot of water levels for training set

The FIS was then trained using ANFIS to forecast the water levels at Police
3-hours ahead. Figure 4 shows the time series plot of target water levels and pre-
dicted water levels. From this figure, it is obvious that the ANFIS outputs conform
well with the target water levels. Figure 5 shows the scatterplot of target water
levels against ANFIS outputs. The scatterplot of target against predicted water
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levels also shows good performance during training with correlation coefficient
0.9892.

Then the set model has been employed to predict water levels on test set data.
Figure 6 shows the time series plot of observed and predicted water levels during
testing and Figure 7 shows the scatterplot of target water levels against ANFIS
output. These figures clearly show the good capability of ANFIS to forecast water
levels 3-hours ahead. The model was quite capable of reproducing the hydrograph
and the correlation coefficient between the observed and predicted water levels
was 0.9971. An interesting point to note is that the model is even capable of
predicting the extreme high water levels which were not present in the training
set.
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Fig. 6. Observed and predicted hydrograph for test set

6, 12 and 24-hour forecast:

Initial FIS structures were generated for 6, 12 and 24-hour forecasts using a
subtractive clustering method which resulted in only two Gaussian type member-
ship functions for each input and two rules in these cases. The ANFIS was then
employed to train the FIS to forecast the water level at Police 6, 12 and 24 hours
ahead. Figs. 8, 9 and 10 show the time series plot of observed and predicted wa-
ter levels for the test set. The plots show the degraded performance of the model
as the prediction horizon increases. As the prediction horizon increases, ANFIS
becomes bias and the peak water levels are underestimated and predicted late.

Table 3 presents the performance of the model measured in terms of root-
mean square error (RMSE), mean percent error (MPE), percent bias (PBIAS)
and determination coefficient (DC) for different prediction horizons during both
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training and testing. It is quite unusual to observe the phenomenon that the DC
for testing set is higher than DC for training set and for small prediction horizon,
the RMSE for the testing set is smaller than the RMSE for the training set.
Nevertheless, for short term prediction, both RMSEs, MPEs and PBIASs are
very small and both DCs are very high.

Table 3. Performance of the model for different prediction horizon.
Training Testing

k | RMSE | MPE | PBIAS | DC | RMSE | MPE | PBIAS | DC
31 2498 | 0.002 0.000 | 0978 | 1.823 0.022 0.019 | 0.994
6 | 4288 | 0.007 0.000 | 0.937 | 3.479 0.074 0.063 | 0.978
9| 5487 |0.009 | —0.004 | 0.896 | 5.419 0.099 0.086 | 0.947
12 | 6.568 | 0.018 0.001 | 0.852 | 6.639 0.087 0.059 | 0.921
15| 7.273 | 0.013 | —0.009 | 0.819 | 7.981 | —0.006 | —0.032 | 0.885
18 | 7.921 | 0.024 | —0.002 | 0.785 | 8.401 0.175 0.131 | 0.873
21 | 8.341 | 0.020 | —0.009 | 0.762 | 9.559 | —0.026 | —0.070 | 0.836
24 | 8966 | 0.031 | —0.001 | 0.726 | 11.352 0.010 | —0.034 | 0.769

Figure 11 shows the plot of RMSE against prediction horizon for both training
and test set. The RMSE increases as the prediction horizon increases both during

training and testing, this increase being higher for the test set than for the training
set.
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Fig. 11. RMSE plot for different prediction horizons
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5. Conclusions

We have described the application of an adaptive neuro-fuzzy system for real-time
forecasting of water levels. The structure of ANFIS was identified by implementing
the subtractive clustering method to partition the input-space and determine the
number of membership functions on each input. This approach decreased the
rule number and increased the speed in both training and testing phases. Then
the parameters were identified by ANFIS using hybrid learning rule. The case
study has clearly demonstrated that an adaptive neuro-fuzzy system can be used
for real-time forecasting of water level variations due to storm surges.

The degree of accuracy of forecast varies with the prediction horizon. As pre-
diction horizon increases, the accuracy of forecast decreases and the performance
of the model becomes bias. However, a high degree of accuracy can be obtained
for short term forecasts. For short term forecasts, the model has been able to
predict reliably the extreme high water levels of test set which were not present
in the training set. This was possible thanks to the application of adaptive rule
assessment methods which regularly update the rule system by assimilating the
recent observations to account for possible changes in the system.

An alternate approach to such real-time forecasting problems will be the
application of neural networks. In particular, the neural network based system
identification approach which provides the variety of nonlinear dynamic models
such as the neural network ARX (NNARX) model, neural network ARMAX
(NNARMAX) model, neural network output-error (NNOE) model and neural
network state-space innovation form (NNSSIF) model will be very valuable for
such applications (See, for example, Ngrgaard 1996, Gautam 2000).
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