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Abstract

The effect of wind influence upon swellings in river estuaries has been presented in
this elaboration. The wind, which causes shear stresses at the water surface, changes
the vertical profile of water flow velocity and therefore is a factor causing wind swell-
ings. This problem is very important in the estuarial river sections, especially in river
inflows to reservoirs (sea), when natural slopes of flowing water are small and com-
ponents of gravity force are not able to oppose the wind effect. Then wind backwater

Occurs.

Notations

parameter in equation of river water turbulent viscosity coef-
ficient,

river width,

velocity constant in Chezy’s formula,
functions of parameter a,

base of natural logarithms (e = 2.71...),
acceleration of gravity,

backwater curve measured in field works
depth of river water,

river slope,

bottom slope,

coefficient of turbulent viscosity,

constants in the formula describing the coefficient of turbu-
lent viscosity,

roughness coefficient in Manning’s formula,
pressure,

ordinate of water level,
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w — wind velocity,

W — axes of co-ordinates’ system,

V — water flow velocity,

zh0 — depth in river under uniform flow,

zw — curve of backwater surface,

zd — bottom line,

zw.w(—) ~— backwater curve in the case when wind is blowing along the
flow,

zw.w(+) ~— backwater curve in the case of wind blowing opposite to the
river flow,

zw.(0) — backwater curve in the at no wind,

o — Saint-Venant’s coefficient,

6 - turbulent viscosity coefficient ratio,

Ky - constant in the formula defining wind stresses,

ko, k, k3 — coefficients in formulae describing turbulent viscosity coef-
ficients,

T — shear stresses,

Tw — wind shear stresses,

T — bottom shear stresses,

P — water density.

1. Introduction

River estuaries are places, where there are very complicated flow conditions due
to mutual penetration of river levels caused by catchment run off and the lower
boundary condition, which can bring about water swellings. Penetration of these
both factors’ influence is the reason why there are small river water slopes. Small
slope in this area is the reason why the wind disturb considerably the flow. The
wind, which is blowing above the water surface, causes the shear stresses — wind
friction. These stresses causes changes in the vertical distribution of river water
flow velocities — changes of tachoida. Change of the vertical velocity distribution
together with the equation of flow continuity and energetic changes transforms
the location of water level. If the natural river slopes are small, components of the
gravity forces are not able to counteract the wind stresses and the wind blowing
opposite to the water flow direction causes wind swellings. These swellings can
form a backwater curve in windy conditions and wind backwater currents, which
have an opposite direction to the main river flow. The analysis of the hydraulic
flow condition in the river-bed, when the wind is blowing at the surface and wind
shear stresses appear is the subject of the present elaboration.
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2. Analysis of the Phenomenon
2.1. Introduction

The analysis of the phenomenon is based upon a hydrodynamic equation of water
flow. The following simplifications have been made for the analysis:

— the case analysed is a two-dimensional flow (vertical-plane). We assume
that the vertical axle y and the horizontal axle x make up the plane of a
co-ordinates’ system,

— mass forces have a potential,
- water density is constant (there is no density stratification),
- motion is steady,

- water motion is caused by free flow under the influence of forces of gravity
and wind action.

At the water surface shear stresses (wind friction) appear, which have a positive
sign, if directed opposite to direction of the river water flow. They cause shear
stresses counteracting the water motion in the river. These stresses are determined
by water motion and wind stresses. However, the atmospheric pressure under the
water surface is assumed constant, and thus the hydrodynamic equations have the
following form:

dV; 1 op d a
dt = X— p . a_x" + a_x(fx;) + 5(1’;’)‘)- (]‘)
dv, 1 9 @ )
—_—t Y- — . — il s—
dt o 3y + ax (ryx) -+ ay (ryy) (2)

the continuity equation having the following form:
div V' =0. 3)

These relationships will be used in the following way. First will be defined the
relationships, which determine the vertical distribution of the component of eddy
viscosity tensor in order to specify friction of the water motion at the bottom and
relevant vertical distribution of velocity (tachoida). Then applying equations (1)
and (3), the equation of backwater curve in windy conditions will be derived in
the classical manner by introducing additional wind friction at the water surface

and eddy viscosity along the river, which can represent sudden changes in the
riverbed cross-section.
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2.2. Analysis of the Vertical Distribution of the Reynolds Stresses’ Tensor
Component

Equations (1) and (2) have been used for the analysis. First was differentiated
/0y and then 8/dx then these equations were subtracted. I gave:
d (an vy ny | ) 3%ny 9 @
dt \ 3y ox )~ odxdy dy? ax2  dxdy’

We analyse the case of uniform steady motion. Therefore all the terms except one
are equal to zero. We have:

3%z,
- )
y
After taking the boundary conditions into consideration,
Ty(0) = and 7y (H) = -1y (6)
the solution if this equation has the following form:
Ty(yY) =1 — (tw + ) Iy'? (M

Moreover, it can be noticed that the maximum velocity Vpax corresponds to
the ordinate yg, which fulfils the condition:

Tb
Tw+ T

Try(yo) =0, hence yp= -H. 8)
The equation (7) and Boussinesq’s hypothesis specifying the components of

Reynolds stresses’ tensor will be the basis for defining the vertical change of

velocity and the friction at the bottom in the further part of the elaboration.
The elements of water motion have been presented schematically in Fig. 1.

2.3. Energy Changes of the Water Stream along the River

Energy changes of the water stream along the river are determined on the basis
of the equation (1) with the help of so-called vertical integration. We introduce
the following definition of average values:

H H

1 - 1

Edey= V' and EfV(y)a’y =W. )
0 0

It can, moreover, be proved that in the flow conditions with a free surface,
when the atmospheric pressure does not change, the terms appearing on the right
side of Egs. 1 and 2 can be described as:

1dp Rz

— —— = ——— (derivative from the water level ordinate), (10)
p 0x ox
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Fig. 1. Vertical distribution of shear stress and velocity

H

.2

1 . / dvx -dy = 9 (a “) where « is Saint—Venant's coefficient. (11)
0

H dt ax \ 2

The component of Reynolds stresses’ tensor 7y, can be assumed according to
Meyer, Pacewicz (1984)

al
rxx=x3-p-HVg—0 hence (12)
ox
dTex 32 [V}
=Kk3.p-H— -{—=—]). 13
ox ik ax2 (2 (3

This term represents practically additional energy losses caused by the rapid
change of riverbed cross-section. Introduction of this term enables the obtain-
ing a smooth curve of the river even in cases of very sudden narrowing.

The final energy changes of the water stream when wind stresses acting on
the surface and rapid changes of riverbed cross-section can be described by the
below-given equation:

3 (ol Rz 3 (V5 twtw(tw V)
L i 4 SRS, - i (N kL LG
ax( 2) 8o Trlina\ 2 oH (14)

Equations (14) and (7), which represent the basic set of hydrodynamic equa-
tions (1), (2) will be used for further calculations.
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3. Tachoida Equation
3.1. Introduction

To describe the tachoida equations, the pewviously obtained relationships (7)
and Boussinesq’s hypothesis, which define the components of Reynolds stresses’
tensor, have been applied. We then have:

txy(y):'»tb—(Tb+tw-—) pKy (y) (y)

T (15)

Equation (15) is the linear differential equation and its solution requires know-
ledge of the vertical changes of eddy viscosity coefficient to be described K, (y)
and the boundary conditions to be specified. The boundary condition is assumed
as follows:

V(0) = 0. (16)

The solution of equation (15) can then be presented as:

Vyy="2. dy _fw+fb,yy-dy
) Ky(y) pH / Ky(y)

(17)

3.2. Classical Tachoidas

The classical forms of tachoidas have been analysed further in the elaboration
relating them to the previously obtained relationships.

1) Bazin’s tachoida (Puzyrewski, Sawicki 1998) can be defined as:
Ky(y)=xo-H-Vy and 7, =0 (18)

after calculating, we obtain:

Vi) y 1 %
Vs =4 ( "2 H (1%
and furthermore
T = kg0 - Vbz

After comparing to Chezy’s formula, we obtain:

g

o (20)

kg =

Then the average flow velocity, which is calculated from Bazin’s tachoida,
is the same as the average value calculated from Chezy’s formula.
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2) Prandtl’s tachoida (Prandtl 1956) can be obtained from the general formulae
under the assumptions below:

Ky(y)=04. (‘%’—-y and T, = 15 = const. (21)
As Prandtl has assumed 1y, = const; to satisfy this we must have 7, = —1.

This means that in fact we have a case when the wind is blowing in direction of
water flow causing the stresses at the water surface |t | = |13|. After calculation

in this case, we have:
Vy)=25/2.In (1) (22)
P Yx

Vo =25 /ﬁ-m(L). (23)
P €Y«

Equation (23) does not fulfil the condition that ¥(0) = 0. The zero velocity is
now at point y = y,. Comparison of Prandtl’s and Chezy’s formulae leads to the
conclusion (Prandtl 1956) that the Chezy constant C is equal to:

C=25/gIn (y%) . (24)

Now, as according to Chezy the constant C is known, it is possible to calculate
the thickness of so-called laminar sublayer y,. Thus we have:

yo=Lexp (—%) 25)

and

in practice this thickness amounts to:
y« = 0.004H (26)

which denotes values of from 0.5 to 3 cm.
It is possible to evaluate the eddy viscosity coefficient at the point y = y,. We

obtain: . 04
Ky(yv.))=04y/g -H-J - — —_ . 27
Y (V) V8 eCXP( JE) (27)

Under average conditions, the coefficient in the river amounts to 1.3.10~*
[m?/s] which means that it is about 100 times bigger than so-called kinematic water
viscosity. Furthermore, it means that there is turbulent motion in the sublayer.

3) Modified Prandtl’s tachoida
Modified Prandtl’s tachoida can be obtained by adjusting Prandtl’s concept
to those, satisfying general conditions at flow:

Txy(H) = -1, =0, and V(0) =0 (tachoida without wind)
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moreover, the distribution of the eddy viscosity should be completed so that
this parameter has no smaller values than the kinematic viscosity.

Ky®)=mi - |2y + K. (28)
After calculating, we obtain:
e .
) = (1- %) (29)
and afterwards:
_ 1 T 1 y y
vo)= o [E[a+om (145 2) - 2] (30)
where: K
0
=— (31)
n H \/%
It is also possible to calculate the average velocity. Then we have:
1 T 2 1+6 3
Eme—y =t ‘In{ —— ) =80 -=. 2
N (Y G BV R @)

Comparison of the average velocities, which are calculated according to
Prandtl’s and Chezy’s modified method, results in the additional relationship:

*/_{(He)t (1;9)—9—2] (33)

Assuming after Prandtl’s m; = 0.4, it is possible to evaluate the eddy viscosity
at the bottom. Thus we have:

Ko =04/gHI - exp [-% - 0'—4C-] . (34)

For conditions of the Central Odra River, we obtain Ky = 30 - v; in the Lower —
Ky =100 v; in the estuarial section — Ko = 30 - v.

The example diagrams of tachoida assumed by Prandtl and Bazin have been
presented in Fig. 2.

33. Tachoida under Conditions of Blowing Wind
3.3.1. Introduction

In order to describe the tachoida under windy conditions, the general relation-
ship (7) was applied, which gives the vertical distribution of the 7,, component
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Fig. 2. Plots of various tachoidas

of turbulent shear stress tensor and the known (assumed) distribution of eddy
viscosity. This results from Boissinesq’s assumed hypothesis. The selection of the
formula describing the eddy viscosity should reflect the nature of the phenomenon
on the one hand, and should not hinder the analytical calculations too much on
the other. In literature two forms of this formula are offered. One is suggested
by Meyer (1985, 1986) as the relationship describing the system’s reaction to the
unknown extortion.

Ky(®) = k1 H - V- exp (—a%). (35)

Parameter a is that which includes wind stresses.

This relationship has a certain disadvantage: the coefficient does not depend
on the way in which the wind changes the tachoida’s shape. A more complicated
formula was therefore suggested later (Coufal, Meyer 1998):

B JT2+ 17 y
Ky(}’)—Kz-H-JT-cxp(—aE). (36)

This relationship better reflects the production of turbulence by wind stresses
at the surface. Application of this relationship comes up against big analytical
difficulties, therefore the formula (35) seems to be satisfactory for the purpose of
practical evaluations.

The second form of the formula is assumed classically according to Prandtl:

Ky@)=ml-‘/r%-y+mz-‘/%-(H—y)+Ko- (37)
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The examples have been shown in Figs. 3 and 4:
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Fig. 3. Various shapes of tachoidas by Meyer (1985)
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Fig. 4. Tachoida with eddy viscosity of coefficient given by Eq. 39

3.3.2. Calculating the Shear Stresses at the Bottom in the Uniform Flow under
Conditions of Blowing Wind

The relationship (14), which constitutes the basis for calculating the backwater
curve in windy conditions, requires defining of the shear stresses at the bottom,
which is opposite to the water movements. These stresses should take into con-
sideration not only elements of water motion, but also wind stresses on the water
surface. These relationships will be obtained as follows. The repeated integration

of the formula (17) enables obtaining of the relationship, which describes the
average flow velocity, and then:

k1-p- Vg =174 Dp(@) — 7w - Dy(a) (38)

where Dy, (a) and Dy(a) were defined in Meyer’s previous elaboration (1985).
As we should obtain Chezy’s formula from the relationship (38) for 7, = 0,
we can calculate that:

K1 = % - Dp(a). (39)
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Fig. 5. Graphs Dy (a), Dy(a), Dy, /Dy

One more conclusion can be drawn from the relationship (38), if it is compared
with the equilibrium equation of flow element in the uniform motion:

goHI = 1, + 13. (40)

Equations (38) (39) and (40) enable us to obtain Chezy’s modified formula,
which makes it possible to calculate the average flow velocity in the riverbed in
uniform motion, when wind stresses occur at the water surface.

Thus, after Buchholz (1989):

tw Dpla)+ Dy(a) 12
Vo = CVH- [Id Py Dh@) :l . (41)

This relationship illustrates that the wind blowing in the opposite direction to
the flow reduces the average velocity in the river cross-section, thereby causing
water swelling.

The relationship which describes the shear stresses at the bottom as the func-
tion of flow and wind stresses, is of key importance for analysis of the energetic
equation (14). We obtain from the formula (38):

. .Dv@)
e =g e Tt o e

This relationship is substituted to relationship (14) resulting in:
V2 Rz 2 (V2 V2
3 a-L =—a—+x3-H-a—— SO el g -Dw+Db. (43)
ox \ 2 ox ox2 \ 2 C2H ogH Dy

This is the basic equation, which generalises the mechanism of backwater
curve with wind influence at the water surface and rapid changes of riverbed
cross-section.

(42)
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4. Equation of the Backwater Curve in a Rectangular Channel
4.1. Basic Solution

The above relationship (43) is an equation of the swelling curve in a river in
its most general form. Wind stresses on the free surface of the water and big
changes of riverbed cross-sections are included in this equation. In order to apply
this equation practically, it must be completed with elements transforming it into
differential, linear one of the second order, which would present the relationship:
depth, distance. The aim of the present paper is to explain the mechanism of wind
shear stress influence at a backwater curve. The rectangular cross-section of the
river and linear bed slope has therefore been assumed. We must therefore use
the flow continuity equation:

0
" Hkx)-B

W where Q = const. (44)

location of water level ordinate in the river:
Rz=1Id -x + Hx), (45)

the constant value for Chezy’s formula can be described by Manning’s formula:

1
C=- [H)]VE, (46)
wind stresses:
Ty =Ky - 0 W|W| where 47)
W= W(x).

The boundary conditions of the second order equation are defined in the
general case by giving:

dH
f =0H=H — = 4
or x b and P 0 (48)
For x — oo the differential equation (43) has the following form:
dRz V2 T D,, + Dy
— ==+ == . 4
ax 4 +C2H + ogH Dy (49)

After transformation the relationship (49) results in the previously obtained
relationship (41), which defined the average flow velocity of uniform motion when
the wind is blowing.

The equation in form of (43) enables extorting the assumed slope (e.g. Iy = 0)
on the swelling curve at its lower edge. It is important when the river flows into
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Fig. 6. Wind backwater curve concept

a reservoir. Shapes of backwater curves in windy conditions have been shown in
the Fig. 6.

For further analysis it is convenient to present the basic equation (43) in the
dimensionless form (Pacewicz, Meyer 1985). We put:

2 2
a9 .5_99 5 g 3 _q-
=g Ho="r H=p. Hi= , (50)

and so-called wind slope:
Y pgHy Dy (a)

After substituting assumed dimensionless values to the basic of equation mo-
tion (43), we obtain :

(1)

3 3
aH _ _, 1-7% #-%9% . B
i W, e T %)
e R AL 1 — 5

The equation (52) contains two additional terms as compared with the classic
theory of Rithlmann and Tolkmitt. One of them contains the second derivative
of depth and the other - so-called wind slope. The equation term containing the
second derivative represents so-called eddy viscosity in the longitudinal direction —
along the river. In practice it denotes the influence of riverbed cross-section rapid
changes upon water level shape. This term generalises the curve equation with
so-called river slope at the lower boundary. The classic solution of the swelling
curve - resulting from the differential equation of the first order (linear) — requires
knowing only the river depth as the lower boundary.
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The water level slope in this place (e.g. at the dam) can be calculated from
the formula (52) assuming Hp = 0; I, = 0. We then will obtain:

1- h

dH T H(©

| =k A0 23]
= 1- 76

In conditions of a river estuary it is difficult to assume that the slope amounts
as much as the formula (53). It can be expected that this slope is given (measured)
or it can be approximated as:

dRz =0, (54)
dx x=0
due to very slow water motion and substantial dimensions of the river-bed cross-
section. The full solution of the equation (52) is not the subject of the present
elaboration. The author would like to focus mainly on wind influence upon the
backwater curve. The calculation results of the simplified swelling curve equation
are therefore presented further as Hg = 0, and so:

H? H
d_H=_1dﬁ_1*. H (55)
dx 1 EE,-_ w 1 }_{E‘_—_
T H? E

related to the conditions of the estuarial Odra River section. The section from the
estuary, in which river water levels are subjected to distinct influences of sea level
and wind changes, is understood in this elaboration as the estuarial Odra River
section. This is the section that reaches from the Szczecin Lagoon to Gozdowice
(often even further). In order to calculate the swelling curve in the Lower Odra
River in a shorter manner, the following simplifications have been assumed:

— river bottom is a straight line with slope I,
- riverbed cross-section is rectangular,
- wind along the river is stable (wind velocity and direction).

In case of such simplifications, different swelling curves in the Lower Odra
River have been obtained for the assumed boundary conditions (water level in
the Szczecin Lagoon, Trzebiez limnigraph and water flow in Gozdowice) as well
as for different winds. The calculation results have been presented in the figures
(according to Libront 1999).

From the presented schemes of the wind backwater curve in the Lower Odra
River it results that this solution depends very much on the boundary conditions
(water level at Tizebiez and water flow at Gozdowice). Moreover, these solutions
indicate that the range of swelling curve, i.e. wind backwater, reaches the Goz-
dowice cross-section and often even further. One can therefore speak of the wind
influence upon the limnigraphic read-outs in the Gozdowice cross-section and
upon their interpretation.
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Fig. 7. Wind influence upon the water level within wind backwater (Q = 250 m?/s, H, =45m,

Iz = 0.00009, k), = 2-107°) (Libront 1999)
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Fig. 8. Wind influence upon the water level within wind backwater (Q = 250 m’/s, Hy, =45m,

I = 0.00005, «/, = 2-107%) (Libront 1999)
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Fig. 9. Wind influence upon the water level within wind backwater (Q = 550 m>/s, Hp =5.5m,
Iz = 0.00005, k., = 2-107°) (Libront 1999)
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Fig. 10. Wind influence upon the water level within wind backwater (Q = 250 m’fs, Hp =5.5m,
Iz = 0.00009, k., = 2- 1075 (Libront 1999)
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Fig. 11. Wind influence upon the water level within wind backwater (Q = 550 m’/s, H, =55m,
Iz = 0.00005, k., = 10~%) (Libront 1999)
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Fig. 12. Wind influence upon the water level within wind backwater (Q = 550 m’/s, Hp, =555m
for wind (+) and 4.55 for wind (-) Iz = 0.00006, «,, = 10_6) (Libront 1999)
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Fig. 13. Wind influence upon the water level within wind backwater (Q = 250 m3/s and 264 m3/s,
H, =33 m, I = 0.00007, ,, = 2-107%) (Libront 1999)

4.2. Solution Analysis of Boundary Conditions

Wind is the basic factor in shaping the backwater curve. The correct solution
of the problem (Meyer 1985) requires knowledge the wind field, i.e. the spatial
distribution of wind force and direction in the entire analysed section of the Odra
River. Researches on the wind field in the analysed section lead to two basic
conclusions (Libront 1999):

— Water level at Trzebiez, which is the lower boundary condition, is a function
of wind velocity direction,

— Velocity of northern wind, which causes wind swellings, decreases very
quickly at the Swinoujécie-Trzebiez section and then shows a tendency to-
wards stabilisation.

The longitudinal distributions, which are the analysis result of wind field along
the Odra River for northern winds, can be assumed according to the following
formulae:

This function has the following form for northern winds (Libront 1999):
w =30.519. (¢ +10)73*!  for wind velocity of 15 m/s at Swinoujscie,
w = 31362 ( + 10)"*%*  for wind velocity of 14 m/s at Swinoujscie,
w=23.102- ( + 10)7%3 for wind velocity of 12 m/s at gwinoujécic,
w = 17958 ( +10)""%3*  for wind velocity of 10 m/s at Swinoujscie,
w = 32394 ( +10)"5132  for wind velocity of 9 m/s at Swinoujscie,
w=28.07-( +10)7%?"®  for wind velocity of 8 m/s at Swinoujscie,
w="711-(1+10)""1%>  for wind velocity of 7 m/s at Swinoujscic,
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w=1225.(1+ 10723 for wind velocity of 6 m/s at éwinoujécic,
w=11.857 -+ 10)_0'3598 for wind velocity of 5 m/s at gwinoujécie,
In these formulae / denotes the distance in kilometres from Swinoujscie. These
changes have been shown graphically in the figure 15.

T
A

Fig. 14. Map of the Lower Odra River
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Fig. 15. Changes of wind velocities along the valley of the Lower Odra River (Libront 1999)

The first of the clements i.c. water level at Trzebiez as a function of wind
direction and velocity, is a problem, which is colloquially called wind swelling in
the Szczecin Lagoon. Many authors have taken up this problem. Libront (1999)
describes this relationship for the north wind in the form of the following diagram

(Fig. 16).
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Fig. 16. The measured and calculated values of swellings caused by wind at Tizebiez

(Libront 1999)

Such an analysis was carried out by Gautam, Holz, Meyer (1999) applying
the theory of neuronial network. The obtained relationships are not linear, and
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the quantity of variables describing the water level in Trzebiez is bigger: sea level,
wind, atmospheric pressure and water flow along the Odra River. Detailed analysis
of this phenomenon is not the subject of the present elaboration.

The limnigraph in Gozdowice is the next boundary condition. It is commonly
assumed that there is a uniform motion in the limnigraphic cross-section of Goz-
dowice independent on the lower boundary condition. The uniform motion in the
Gozdowice cross-section means that the relation between the water level, flow and
wind stresses is described by the relationship (41), which is called the generalised
Chezy formula. This relationship means that flow-level relation in Gozdowice
cross-section is a function of wind velocity. There is a different relation for every
wind velocity. The problem can also be formulated in another way: we search for
depth correction for every wind velocity so that it would be possible to apply a
universal curve. The universal curve is one of depth-flow relation for the case,
when the wind is not blowing w = 0. This correction has been shown in the figure
17. It results that in practice this correction does not depend on flow for winds of
less than 10 m/s (Libront 1999).
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Fig. 17. Changes of average depth at Gozdowice under the influence of wind (for I equal to
water level slope) (Libront 1999)

The diagram Q = Q (Rz, W), which makes the flow dependent on the water
level ordinate and wind velocity, can also be applied for practical evaluations
(Libront 1999).

If the above relationships describing the upper and lower boundary condition
as the function of wind are taken into consideration, it is possible to compare the
swelling curve in the Lower Odra River in windy conditions. The situation from
7th September 1996 was given as the example here referring to Libront ( 1991). In
this case the north wind was measured 10 m/s and the water level at Gozdowice —
6.34 mNN. After some necessary corrections — Q = 519 m%/s. The wind swelling
in the Szczecin Lagoon — Ak = 0.55 m. The ordinal condition of depth at Tizebiez
— Hr = 1330+ 0.55 = 13.85 m.
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Fig. 18. Flow curves in Gozdowice in windy conditions (Libront 1999)

The results of analytical calculations and backwater ordinates have been meas-
ured and presented in the figure 19. ‘

Very good agreement of the measured and calculated values can be noted in
this figure.
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Fig. 19. The calculated and measured swelling curves in the Odra River mouth (Libront 1999)

5. Conclusions

S5.1. In the elaboration there an analysis of the swelling curve in the river when
wind stresses occur at the water surface has been presented. The analysis is
based upon the hydrodynamic equations in windy conditions.
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5.2. Reynold stresses’ tensor. After taking Boussinesq’s hypothesis into considera-
tion, this distribution allows defining of the vertical distribution of river flow
velocities (tachoida) and finding the relationship between the shear stresses
at the bottom, flow elements and wind stresses. This relationship has been
derived for conditions of uniform motion. After including the additional re-
lationship describing the equilibrium of flow element, it is possible to obtain
the generalised Chezy formula taking wind into consideration.

53. The analysis of classical tachoid forms, which are presented in the literature,
leads to the conclusion that so-called Prandtl’s tachoids do not fulfil the
condition of 7y, (H) = —1,, =0, as there is no wind. Moreover this tach-
oida does not fulfil the bottom condition ¥ (0) = 0. Hence modification of
Prandtl’s tachoids is suggested to meet these conditions. The necessity for
this arises not only from the fact that the eddy viscosity exceeds considerably
the kinematic viscosity at the bottom, but there must be 7, (H) = 0 at the
water surface when here is no wind.

5.4. Also presented are tachoidas in conditions in which no wind stresses appear
on the water surface. The wind blowing in the direction opposite to the flow
of water reduces the flow velocity in the superficial layers. Very strong wind
can give rise to superficial reverse currents. This flow continuity requires
water swelling.

5.5. The analysis of wind swelling in the river has lead to the derivation of the
so-called wind swelling curve (wind backwater). The equation of this curve
includes not only wind influence, but also rapid changes of the riverbed
cross-section. In order to enable practical calculations, evaluative program
has been prepared, which allows calculating the wind swelling in conditions
of longitudinally changeable wind.

5.6. The evaluations, which were made for the estuarial Odra River cross-section,
indicate that the range of the wind backwater reaches even 100 km from
Trzebiez. It means that the wind backwater curve should be considered while
interpreting the limnigraphic indications.
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