Archives of Hydro-Engineering and Environmental Mechanics
Vol. 48 (2001), No. 2, pp. 91-106

Co-variability of Bars in a Multi-bar Nearshore Zone
Determined with Canonical Correlation Analysis (CCA)

Grzegorz Rozynski

Institute of Hydro-Engineering of the Polish Academy of Sciences,
ul. Koscierska 7, 80-953 Gdansk, Poland

Abstract

Nearshore bed variations of the southern Baltic shore were investigated with the aim
of detecting co-variability among bed forms of a multi-bar system. The studied area
is located at IBW PAN Coastal Research Station at Lubiatowo. The beach consists
of fine sand of median grain equal to 0.22 mm, is mildly sloping and boasts multiple
(usually 4) bars, which is typical for the coast in the southern Baltic. Data on bed
topography were collected along 27 lines, equally spanned every 100 m, since 1987
to 1999, usually twice a year. Fairly high alongshore bed homogeneity made it pos-
sible to choose one representative profile for which the CCA method was employed.
The method demonstrated considerable potential for detecting co-variability of bed
features in the nearshore zone. The results show that some 80% of variability in the
region of the offshore slope of the outermost bar can be attributed to variations of
Dean equilibrium profiles. The portion of variability of the two innermost bars due
to variations of equilibrium profiles equals 40%. Horizontal counter-movements of
outer and inner bars can be responsible for some 20%. The remaining 40% should be
related to highly variable short time scale phenomena like breakers and wave driven
currents in the vicinity of inner bars.

1. Introduction

Morphodynamic processes in the nearshore zone are complex, highly nonlinear
phenomena involving morphological features in a wide range of spatial and tem-
poral scales (De Vriend 1991, Larson and Kraus 1995). Even though the insight
into the physical mechanisms of these processes is growing continuously, it is
still insufficient to properly understand, depict and predict the behavior of many
coastal systems. However, the number of high quality data sets on coastal morpho-
logy is growing simultaneously, thus providing the possibility of deriving valuable
information on morphological properties by means of computer-intensive ana-
lysis and data-driven modelling (Larson et al. 2000b, Southgate et al. 2000). Such
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methods were originally applied to meteorological and oceanographic data, and
only recently has their use been extended to studies on coastal morphology.

In analysis of large data sets it is a common practice to split state vectors (i.c.
the morphological data) into signal and noise. The signal is usually featured by
a few patterns representing behaviour of the process in question, whose physical
interpretation we seek. The noise is believed to contain all secondary processes
the joint influence on the studied process of which is deemed negligible. A signal
can be specified in various ways extending from subjectively defined patterns, e.g.
a definition of a longshore bar, to patterns constructed to optimize some statistical
measure. Classic examples are empirical orthogonal functions (EOF), (Winant et
al. 1975), Aubrey 1979, Wijnberg and Terwindt 1995, Larson et al. 1999), where the
signal is determined by dominant eigenmodes of a covariance matrix in the spatial
domain (the EOF modes). Their physical interpretation is usually a crucial point
of a study. Apart from that the EOF method offers a powerful filtration potential,
i.e. we can construct the signal by retaining as many EOF modes as necessary
to achieve a prescribed threshold of the overall raw state vector variance, e.g.
95%. The signal can also be extracted from a covariance matrix in the temporal
domain, for which we determine eigenclements. This technique is known as singu-
lar spectrum analysis (SSA), where we investigate one variable, or multi-channel
SSA (MSSA), where we study a vector time series (Vautard et al. 1992). From
the most significant cigenelements we can derive several key patterns accounting
for most variability over time. They usually represent trends, oscillations, determ-
inistic chaos etc., for which we again search physical interpretation. In coastal
morphology SSA was used by Southgate et al. (2000) to evaluate long-term trends
of shoreline position variations at several beaches around the world. Rézynski et
al. (2000) employed SSA to determine forced and self organized shoreline re-
sponse for a beach in the southern Baltic Sea at IBW PAN Coastal Research
Station (CRS) at Lubiatowo.

Principal oscillation patterns (POP) is a slightly different technique. It was
developed to predict future states of large systems (Hasselmann 1988), so this
technique offers an opportunity for constructing data-driven models that base
on fully incorporated large data sets. The POP system matrix relates current and
previous states of a system, and the character of its eigenelements determines their
relevance for prediction purposes. Rézyiniski and Jansen (2000) applied POP with
EOF signal pre-filtering to come up with the data-driven model of bed evolution
in the nearshore zone at Lubiatowo.

Canonical correlation analysis (CCA) allows for investigation of relationships
between two simultaneously observed vector time series. In other words, we try to
reconstruct one field (predictand) with the other field (predictor). Discrepancies
between predicted and recorded values of a predictand determine the relevance of
this method in a particular application. Widely used in climate studies, it has not
been frequently applied in coastal engineering. Larson et al. (2000a) employed
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CCA to study the relationship between beach profiles and waves at Duck, USA.
In the current study, the CCA was utilized to assess the influence of bed forms
on each other in the multi-bar environment of the beach at CRS Lubiatowo.
First, the Lubiatowo beach is described together with the morphological data
sets collected there. Then a brief description of the CCA method, together with
EOF signal pre-filtering is given. Finally, the CCA is employed in records of bed
topography along a representative beach profile, collected between 1987 and 1999.
The records were divided in various ways to analyze different predictor/predictand
pairs. Moreover, bed equilibrium profiles were computed and used as predictors.
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Fig. 1. Location of CRS Lubiatowo on Polish coast

2. Field Site and Data

The CRS Lubiatowo is situated on the Polish Coast, facing the southern part
of the Baltic Sea (Fig. 1). The beach there has a mild slope tana = 1-1.5%, is
build of fine sand of median grain size Dsy = 0.22 mm and usually encompasses
multiple longshore bars. They contribute to multiple breakers frequently observed
in the surf zone. The oblique long-term energy flux triggers predominantly west
to east littoral drift. Records taken over years indicate that during average storms
the significant wave height outside the surf zone (depth A about 20 m) usually



94 G. Réiyfiski

reaches H; = 2-2.5 m with a mean period T = 5-7 s. As the waves propagate
onshore their energy is dissipated and when 2 = 2-3 m, the average wave height
typically equals H = 0.5-1 m with T = 4-5 s, Pruszak et al. (1999). Fork = 1 m
it reduces during storms to 0.3-0.5 m. The influence of tides is negligible due to
the isolation of the Baltic Sea from the Atlantic Ocean by the Danish Straits.

Long-term bathymetric surveys have proved that the beach at Lubiatowo nor-
mally exhibits a system of four stable bars, cf. Rézynski et al. (1999). The innermost
bar is located some 120~170 m from a local baseline with depth over crest equal
to 1-1.5 m. The 2" bar is situated 200-300 m from the baseline and its crest lies
2-2.5 m below the mean sea level. Two outer bars are 400-500 m and 600-800
m away from the base and their depths at crest are 3.5-4 m and 5-5.5 m. An
ephemeral 5™ bar occasionally develops in very close proximity of the shoreline
and it may come ashore as a small beach berm. The bars do not migrate but
only oscillate about their average locations (Pruszak et al. 1997 and 1999). The
baseline is fixed on a dune crest some 10-50 m from the shoreline.

Measurements of bed topography were initiated in 1964 and since 1987 they
have been executed upon a fairly regular basis, usually twice a year along 27
cross-shore lines, uniformly spanned every 100 m, every 10 m between consecutive
points on one line. Enumeration of those lines originates from the history of the
local geodetic base at CRS Lubiatowo; initially baseline points 3, 4... 10, east of
point 3 were fixed, then the points 11, 12... 29 were added west of point 3. The
lines are usually sampled in spring and autumn after and before winter storms.
Naturally, such an order is sometimes violated and over several years only one
record was taken. Furthermore, some spring records could occur early in summer
and some other autumn surveys were actually done in the late summer.

3. Canonical Correlation Analysis (CCA)

CCA was developed by Hotelling (1935) as a method characterizing linkages
between sets of test scores. The potential value of this technique in geophysical
studies was first pointed out by Glahn (1968) and then by Davis (1976, 1978). The
version presented in this paper includes pre-filtering of raw data sets with EOF
and stems from Graham (1990), who utilized results of previous studies (Graham
1987a, b), Barnett & Preisendorfer 1987).
In the traditional approach the problem can be formulated as follows:

Let us begin with two data sets in the form of vector time series ¥, and Z,,,
where ¢ indicates observations in time of spatial variations y and z:

t=12,...n, y=12,...ny, z=1,2,...nz.

The number of observations nf must be the same for each data set and the
numbers of spatial points need not be equal. After removal of mean values of each
spatial location y and z, we construct linear combinations of Y and Z respectively,
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so that new variables Uy, and ¥, are maximally correlated, U is related to 1,
U, to V5 and so forth. In addition it is required that each U and V has a unit
variance and the U’s and ¥’s are orthogonal. Hence, we arrive at the following
characteristics:

T it N
(UnVa) =0 m+n, @)
(UnUn=1) m=n, 3)
(UnUn) =0 m#n, (@)
(VmVa) =1 m=n, )
(VimVa) =0 m#n. (6)

Angle brackets < ... > denote expected value of the vector product over a period
of time, e.g.:

(UnUn) = ZtUthnr

Given constraints (1), (3) and (5) the desired weights for transforming Y into U
and Z into V can be found after solution of the eigenvalue problem:

(1) (v2)(z2)” (2'Y) - ul]=0 )

where the letter ¢ here indicates the matrix transpose. The eigenvalues u, (often
denoted p2) are squared canonical correlations sought in Eq. (1). The concom-
itant eigenvectors R, ,, provide the required weights for transforming Y into U.
In matrix notation:

U=YR. (8)

By canonical mode m we will understand the canonical correlation u,, with
the associated eigenvector R, The maximum number of canonical modes is
determined by the rank of the quadruple product in Eq. (7); for large natural
systems it will almost certainly be equal to the number of observations nt. When
we swap Y for Z in Eq. (7) we obtain the same canonical correlations g, and the
eigenvectors Q for transforming Z into V, i.e. ¥ = ZQ. Let us now denote the Y
field as predictor and Z as predictand. Predictor is linked to the predictand with
the matrix of regression coefficients S relating the values of predictor canonical
mode temporal amplitudes U to the individual points in the predictand field Z.
Due to orthogonality and unit variance of U, this matrix can be evaluated from:

S,z = (UnZ:) , 9
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where m is the canonical mode index and z the spatial index of elements of Z. In
matrix notation the regression equation takes the form:

Z=U"S, (10)

where Z are predictions of Z with the Y field. Using Eq. (8), we can write this
equation in “real” space: X
Z =YRS. (11)

The CCA procedure outlined above can be enriched with EOF signal pre-
filtering and compression. Since most variance in Y and Z is contained in a few
EOF modes and the number of spatial points (ny and nz) is usually large, the EOF
expansion guarantees matrix conversion in Eq. (7), whose rank usually equals the
number of realizations nt, being less than ny or nz. The resultant matrices have
substantially smaller dimensions leading to reduction of memory requirements and
computation time. Furthermore, the expansion allows for thorough inspection of
either of the fields by investigating the behaviour of dominant EOF modes. The
modes reflecting residual variability can be treated as noise and safely skipped.

The EOF expansion consists in calculation of covariance matrices of both
data scts and obtaining their eigenstructures. For the Y field for example, the
covariance matrix is calculated as:

1
I'=—YY, 12
. (12)
which means that the individual elements of I" are given by:
Lij=(%,Y,)ij=12..ny. (13)

The cigenstructure of this matrix consists of eigenvalues x cqual to the variance
of a given mode and the concomitant spatial eigenvectors e, usually scaled to
unit length. The associated temporal amplitudes (EOF coefficients or principal
components) are obtained by:

o =Ye. (14)

Their variance is equal to the corresponding cigenvalue, ie. (o?) = ;.

Repeating the above procedure with the Z field, we obtain the eigenvalues A,
eigenvectors f and amplitudes 8. Hence, both fields can be expressed in terms of
EOF modes:

Y =, (15)

Z=pf". (16)
The number of EOF modes retained for CCA analysis was denoted na and np
for Y and Z fields respectively. Cross-correlation of both fields can be expressed
by temporal amplitudes « and B:

C=rlopryl, (17)
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T, and T represent diagonal matrices of inverse square roots of the eigenvalues
of EOF decomposition of Y and Z respectively, e.g.:

1
=i
rx(u: = F (18)

The analogue of the quadruple matrix product in Eq. (7) can now be obtained as:
Cx = CC' (19)

with the eigenvalue problem:
(Cx—pl) =0. (20)

The eigenvalues w yield squared correlations between the temporal amplitudes of
the canonical modes, while the associated unit length vectors R provide weights
for combining the EOF modes to come up with the canonical amplitudes:

U=eal['R. (21)

The matrix I'y 1 normalizes the EOF amplitudes to unit variance, so the U’s
variance equals unity as well.

The percentage of total variance in the Y field accounted for by each canonical
mode can be calculated, because the eigenvector elements R;,, are correlations
between the temporal amplitudes of EOF mode i mode (e;) and canonical mode
m (Uy,). Hence, if the percentage of total variance in the Y field, accounted for
by each EOF mode equals P;, then that of total variance in this field accounted
for by canonical mode m is given by:

PL=Y R,P. 22)
i=l

If the number of canonical modes is equal to nm, the sum of P gives the percent-
age of total variance of the predictor field accounted for by predictor canonical
variables.

Apart from canonical temporal amplitudes U, which are linear combinations
of the temporal amplitudes of the EOF-s we can also define canonical spatial
patterns g as linear combinations of the spatial EOF patterns:

g=el 'R (23)

Here the matrix I',! scales the spatial EOF patterns e so that the projections U
of the predictor data Y onto the patterns g,

Yg=U (24)
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retain the unit variance, as required by Eq. (3).
The predictand side of the canonical modes can be calculated as a solution of
the eigenvalue problem:
(C*™* —ul) =0, (25)

where C** = C'C. As a result we obtain the same eigenvalues as in Eq. (20)
plus the eigenvectors Q combining the predictand EOF-s. Temporal and spatial
patterns of the predictand side are then calculated analogously to Egs. (21) and
(23):

V=pry'o. (26)

h=frylQ. (27)

Continuing the analogy we can calculate the fraction of the total variance of the
Z field for the canonical mode m:

np
P=Y &L, (28)
Jj=l1

where L; denotes the percentage of total variance in the Z field held by j pre-
dictand EOFE. The sum of PZ quantifies the fraction of total variance in the Z
field captured by predictand canonical variables.

The fraction of the predictand field variance retrievable by canonical predictors
is given by:

P* = Z I')zm[.l,m. (29)
m=1

This number provides a useful measure of co-variability between predictor and
predictand fields. However, a more exact figure of merit, defining how much of
the available predictand variance can be accounted for by the canonical regression

model, is produced by:
P*

np
34
Jj=1

i.e. P* is divided by percentage of variance of input predictand EOF-s. Practically,
these quantities are almost equivalent when the threshold of variance of input
EOF-s in cither field is high enough, say 95%. This can be achieved by suitable
choice of na and np, so that na = nf = max (nagse, nfosg) = nm.

The crucial issue of CCA analysis is the derivation of regression matrix, re-
lating predictor field to the predictand. By virtue of orthonormality of predictor
canonical variables U, we can relate them to input predictand EOF-s 8, by taking
the expectations:

P®=

: (30)

Sm,j = (Umﬁj> (31)
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so that we come up with the estimates:
B=US. (32)

Post-multiplying by f* and using the identity Z = Bf! we can calculate the estim-
ates of the predictand field by predictor canonical variables:

Z=USf". (33)

Now, using Eq. (24), we can express these quantities with the original predictor
field:
Z =YgSf'. (34)

4. CCA Analysis of Multi-bar Shore at CRS Lubiatowo

22 measurements of the representative profile 4 from 100 to 900 m from the
base were used in the study. Their dates are presented in Table 1. The choice of
representative profile is partly explained in Fig. 2, where all records for profiles
4, 5, 6 and 7 are shown. They indicate that their behaviour is very similar. More
remote profiles follow the same pattern, so the beach is uniform in the along-
shore direction to a high extent, thus justifying the simplified approach with one
representative profile. Moreover, not all measurements at other lines cover the
desired distance 100-900 m.

Table 1. Dates of records of bed topography at CRS Lubiatowo

Spring Autumn
16™ May 1987 | 2279 Sep. 1987
28% Apr. 1988 | 5™ Oct. 1988
24™ May 1989 | 13™ Sep. 1989
50 Jun. 1990 | 14™ Aug. 1990
29'8 Oct. 1991
215 May 1992 | 21% Oct. 1992
20 Jul. 1993 | 30" Sep. 1993
24" Apr. 1994

5% Oct. 1995
24™ Aug. 1996 | 6 Oct. 1996
5t Nov. 1997
26" Jun. 1998 | 23" Nov. 1998
4™ Tul. 1999 | 8™ Sep. 1999

Before the CCA analysis was started both mean empirical profile and line of
standard deviations of measurements were plotted as solid lines in Fig. 3. We can
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Fig. 2. Bed topography 1987-1999 for lines 4, 5, 6 and 7

see that standard deviations have minima over bar crests and troughs (the latter
excepting the trough between bars 3 and 4). Maxima are associated with onshore
and offshore slopes of bars. Such a pattern indicates that crests and troughs are
fairly firmly fixed, while the slopes may approach both crests and troughs during
oscillatory movements of bars, producing greater scatter of measurements. Hence,
bar oscillations occur in fairly narrow bounds being limited by much more stable
positions of crests and troughs.

A key point of every CCA study is the choice of predictor and predictand.
In case of beach profiles the direction of incoming waves indicates to take one
Or more outer bars as predictors and treat inner bars as predictands. In such
reasoning it is assumed that outer bars may control the behaviour of inner bars
by the feedback between incoming waves and outer bars, i.c. the waves transform
outer bars and are simultaneously transformed by rapid bed shoaling over them.
This leads to the loss of wave cnergy due to breakers, thus inner bars are then
exposed to reduced energy influx.

The first analysis was carried out for bar 4 as predictor (610-900 m) and bars
1,2 and 3 as predictand (100-600 m), in order to assess the dependence of inner
bars on the outermost bar. nm =9 canonical modes correspond to 99.56% of
total variance of the predictor and 95.86% of the predictand with P® = 0.624. For
this regression predictions Z were computed together with discrepancies between
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Fig. 3. Results of CCA analysis for different pairs of predictor and predictand

actual records and predictions Z; = Z — Z. The resultant standard deviations of
prediction errors are plotted in Fig. 3 as a dense dotted line. This line shows
that roughly speaking prediction errors are proportional to standard deviations of
measurements, so positions of crests and trough are predicted with better accuracy
than onshore and offshore slopes of bars. Average prediction error, computed as
a mean value of all elements of Z; matrix is equal to w = 0.4 m.

The 274 analysis took positions of bars 1 and 2 as predictand (100-400 m) and
bar 3 as predictor (410-620 m). 8 canonical modes correspond to 99.43% of the
total variance of the predictor and 96% of the predictand. It is interesting, that
P® — 0,667 w = 0.37 m, are very close to the previous results. The resemblance is
even more striking when we analyze the line of standard deviations of prediction
errors (dashed line in Fig. 3), which almost exactly matches its counterpart from
the previous analysis.

The results hardly change when we use outer bars 3 and 4 as predictand (410-
900 m), as with 8 canonical modes we obtain 97.36% of total predictor variability
against 96% of the predictand’s. Consequently, P® = 0.647, w = 0.39 m and the
line of standard deviation of prediction errors, drawn in Fig. 3 as a fine dotted line,
very consistently matches the results of the past two analyses. It can therefore be
concluded that predictands and predictors must share a common feature, so that
practically the same results are obtained for various combinations of predictor and
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predictand. They also point out the upper threshold (roughly 60%) of variability
of inner bars that can be explained by the variability of outer bars.

Table 2. Dean coefficients of recorded beach topography at line 4

No. Rec. | month & year | Dean coefficient
1 May’87 0.081
2 Sep.’87 0.076
3 Apr.’88 0.074
4 Oct.’88 0.072
5 May’89 0.078
6 Sep.’89 0.074
i) Jun.’90 0.073
8 Aug.’90 0.076
9 Oct.91 0.080
10 May’92 0.077
11 Oct.’92 0.082
12 Jul.’93 0.073
13 Sep.’93 0.072
14 Apr.’94 0.078
15 Oct.’95 0.070
16 Aug.’96 0.073
17 Oct.’96 0.070
18 Nov."97 0.072
19 Jun.’98 0.071

20 Nov.'98 0.073
21 Jul.’99 0.074
22 Sep.’99 0.075

One such feature is the bed equilibrium profile. Table 2 contains Dean’s coeffi-
cients derived upon least square fit to the measurements. They define equilibrium
profiles, which may serve as predictor to the measurements treated as predictand,
over the entire stretch 100-900 m. The performed CCA analysis illustrates to what
extent equilibrium profiles control different portions of beach profiles. The value
P® = 0.555 suggests that more than 50% of overall variability can be attributed
to variations of equilibrium profiles. The line of standard deviations of predic-
tion errors is plotted as an intermittent line in Fig. 3 and matches the patterns
of previous analyses and the line of standard deviations of measurement errors.
The average prediction and measurement errors over the entire profile equal w
= 0.39 m and & = 0.57 m respectively. The quantity T = 1 — (w/8)* equals 0.53, is
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almost equal to P®, and is another estimate of the percentage of explained vari-
ance. The quantities w, 8 and 7 for inner bars, computed over the subset (100-400
m), are equal to 0.485 m, 0.627 m and 0.40 respectively. Consequently, for the
stretch 100-600 m representing bars 1, 2 and 3 we have w = 0.45 m, 8 = 0.625
m and 7 = 0.49. Finally, for 700-900 m w =0.22 m, § = 0.46 m and t = 0.78.
The CCA analyses, done separately, give very similar results. For Dean profiles
at 610-900 m as the predictor and bed records 100-400 m as the predictand we
obtain P® = 0.45 and w = 0.47 m. For the same predictor and predictand bed
records 100-600 m we get P® = 0.53 and w = 0.44 m. We can thus see that from
the analysis over the entire line 100-900 m with Dean profiles as predictor we can
deduce the outcome of partial CCA computations over the profile subsets very
accurately.

The above results demonstrate inner bars 1 and 2, and depend much less on
equilibrium profiles (v = 0.4, P® = 0.45) than the outermost bar 4 (r =0.78).
Since changes in equilibrium profiles depict vertical profile variability we may
therefore conclude that the outermost bar is dominated by vertical fluctuations,
whereas for inner bars vertical movements play a less crucial role.

The comparison of all results implies that of 60% of total variability of in-
ner bars that can be explained by variability of outer bars, some 40% can be
attributed to vertical oscillations of the whole profile, expressed by changes in the
Dean coefficient of the bed equilibrium line. Hence, the remaining 20% should
be entailed by horizontal onshore-offshore oscillations of outer bars. Some sup-
port of this reasoning can be found in Pruszak et al. (1999), who argue that inner
and outer bars are two sub-systems. They discern sub-systems upon the fact that,
however gently, bar crests within both sub-systems are positively correlated, while
between sub-systems the correlation is negative. In other words, we can expect
that onshore movement of inner sub-systems and seaward movement of outer
bars tend to occur together and vice versa. Consequently, favourable conditions
should result in doubling of crest in bars 2 or 3 or their complete merger, leading
to a 3 bar profile. Interestingly, such situations were encountered and are part
of the data used in the CCA investigations. Since Fig. 3 shows bar crests are
fairly stable profile characteristics, their positions are not accidental and there-
fore counter-movements of both sub-systems may account for 20% of variability
of inner bars. It should be remembered though, that the above reasoning is not
solid evidence but indicates directions of further research.

The results presented above suggest that 40% of variability of inner bars should
be driven by phenomena not related to outer bars. They should include breakers
over inner bars of mild waves that are barely affected by outer bars, longshore
and cross-shore wave driven currents and interactions between shoreline and inner
bars. Minor impacts could be attributed to self-organized behaviour of inner bars,
such as spells of deterministic chaos, detected in movements of shoreline positions,
Rozynski et al. (2000). In fact Pruszak et al. (1999) found that the movements
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of shoreline and inner bars were indeed positively coupled and added shoreline
positions to the sub-system of inner bars. As regards mild waves and wave driven
currents, we believe a separate CCA analysis of wave climate and/or wave driven
currents as a predictor and bed topography in the vicinity of inner bars as such
could help gain further insight into bar formation and evolution substantially.

5. Conclusions

The study demonstrated the potential and usefulness of the CCA method for
studies of complex multi-bar coastal systems. By applying CCA it was found that
some 60% of variability of inner bars at the study area be explained by variations
of one or two outer bars, no matter what predictor we take. When Dean equilib-
rium profiles, depicting vertical profile variability, were adopted as the predictors,
they appeared to account for 40% of variability of inner bars. Together with the
previous study, it suggests that counter-movements of inner and outer bars may be
held responsible for a further 20%. This however is not based on solid evidence
but only on reasoning, but anyway it affords guideline for further research.

The remaining 40% of variations in inner bars should be attributed to local
interactions of inner bars and mild waves, uninterrupted by outer bed forms, wave
driven currents and interactions of shoreline movements and inner bars. More
research is required to work out any conclusive results for those phenomena and
the use of the CCA method for waves and/or currents as a predictor and bed
topography as a predictand should be recommended.

Roughly 80% variability of the outermost bar can be explained by changes in
the bed equilibrium profile. Such a result cannot be surprising, since this bar is
always long and flat, so it can hardly move horizontally as one entity. Moreover,
its depth prevents the influence of most waves, apart from storms, when the
equilibrium profile undergoes the most severe changes as well.
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