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Abstract

Using the principle of conservation of momentum, an analysis of the one-dimensional
description of flows of Newtonian fluids in prismatic channels with side weirs was
carried out. A new form of the equation of motion — with a corrected mass decrement
term and added momentum-variation term — has been derived from the principle
of conservation of momentum. Following examination of relevant coefficients, the
dimensionless form of the modified equation applies to the hydraulic design of a side
weir with a high overfall crest and a throttling pipe, used in sewer systems.
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Notation

cross-sectional area flow,
water surface width in the channel (width of rectangular channel),
channel diameter,

Froude number in the channel at the beginning of the overflow
chamber (x = 0),

acceleration of gravity,

depth of flow in the channel,

critical depth of flow in the channel,

depth of flow at the beginning of the overflow chamber (x = 0),
bottom slope,

hydraulic gradient,

ratio of longitudinal component U and mean velocity v (k = U/v),
similarity number of channel shape at the beginning of the overfall
(Ko = bHo/Ao),

unit vector having direction of local velocity vector v parallel to
mean velocity vector v,

length of overflow crest,
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relative length of overflow crest (Ly = L/Hp),

mass,

channel roughness coefficient in Manning’s formula,

height of weir crest,

wetted perimeter of flow section,

relative height of overflow crest (Py = p/Hp),

ratio of discharge in overflow chamber (g = Q(x)/Qy),

unit volume flow (per length Ax) over side weir,

ratio of flows (g, = Q/Qy),

discharge of side weir,

discharge in inlet channel at the beginning of the overflow chamber
(x =0),

discharge in overflow chamber in cross-section with abscissa x,
time,

hydraulic radius (R, = A/P,),

longitudinal component of velocity of spill flow,

volume,

relative head above overfall crest at the beginning of the side weir
(Wo = (Hy — p)/ Hy),

distance of any point on side weir from its beginning (abscissa),
local velocity (in x directions) of stream filament in channel,
mean velocity of main stream in channel,

mean velocity of side-discharge stream,

momentum coefficient,

momentum coefficient of side-discharge stream,

dimensionless ordinate of depth of flow elevation in the channel
(¢ = H/Hp),

coefficient of momentum variation in the mass decrement term
(n =28 —kBp),

ratio of local value of hydraulic gradient Sy to hydraulic gradient
8o in the initial section of the overflow chamber (y = Sr/Sf0),

angle of inclination of channel invert,
weir discharge coefficient,
dimensionless abscissa of length (§ = x/L),

dimensionless abscissa of length for discharge coefficient (£, =
x /Hp),

momentum of liquid mass,
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p - liquid density,
t - shear stress on channel wall.

Subscripts

0 - beginning cross-section of overfall chamber (x = 0),
1 - value normalized to the interval <0, 1 >.

1. Introduction

The problem of how to compute water flow over side weirs has received consid-
erable attention for many decades. In spite of a large number of relevant studies,
none of the formulas derived so far can be applied with confidence to describe
this kind of flow adequately. For convenience, use has been made of a variety
of relations. Initially, front weirs were considered (after suitable adaptation; the
Poleni formula). Later, preference was given to some simplified empirical formu-
las derived from experiments, which were mostly run within a narrow range of
variation in the investigated geometrical and hydraulic parameters of side weirs
(e.g. Kotowski’s formulas, 1990), as well as to some theoretical expressions (e.g.
those derived by Hager 1987). Further approaches to side weir computationave
combined the description of the free-surface profile along the weir (using differ-
ential equations of motion) with the formulas describing flow over the side weir
(e.g. de Marchi 1934, Frazer 1957, El-Khashab and Smith 1976, Ishikawa 1984,
Hager 1987, 1993, Uyumaz and Smith 1991, Uyumaz 1997, Kotowski 1997, 1998).

Most of the investigators concentrating on free flow over side weirs in open
channels have based their theoretical analyses on equation of motion derived
from the energy solution for the energy coefficient « = constant and U = v, this
means the longitudinal component of velocity of the spill flow (U) is equal to the
mean velocity of the main stream in channel (v). Others have used an equation
of motion derived from the momentum solution for the momentum coefficient g
= constant and U # v.

However, the investigations reported by El-Khashab and Smith (1976) and
Kotowski (1998) revealed that the coefficients of energy and momentum were not
. constant and U > v, along the length of side weirs.

2. Derivation of the Equation of Motion for Channels with Side Weirs
2.1. Balance of Momentum and Qutside Forces

From the principle of conservation of momentum in Newtonian continuous-
medium mechanics it follows that the change of momentum (dI1) with time
(dt — 0) is equal to the sum of body and surface forces. Thus, the change of
momentum is equal to the sum of forces acting on the control liquid volume
(AV) between cross-sections 1 - I and II - II of the channel (Fig. 1). Momentum
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was balanced for this volume of the liquid and then the sum of forces acting on
the liquid was calculated. On this basis, using the continuity and momentum equa-
tions, the equation of motion for side weir flow was derived (Kotowski 2000b).
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Fig. 1. Definition sketch for channel with discharge over side weir and throttling pipe:
(a) elevation; (b) plan; (c) section I - I

The momentum brought in by a liquid mass m flowing through an element
having area dA in time dt — 0 is:
dmv) = (pvdAdH)yv (1)

where v - a local velocity vector perpendicular to area d A cut out from flow area
A. Thus the total momentum brought in by the liquid mass flowing through a flow
section I — I of area A in time dt is (Fig. 1):

dﬁ,=pd:fuadA=rpdtfu2dA ()
J .

where 7 — a unit vector, whose direction is the same as that of the local velocity
vector ¥ parallel to the mean velocity vector . Momentum (Eq. 2), expressed by
the mean liquid flow velocity, can be written as:

dil; = B (puAdt) D = B (pvAdt) vi = BpAvdtT (3)
where 8 - dimensionless (corrective) coefficient of momentum.
It follows from equations 2 and 3 that:

ipdt f A = Bipde iR )
A
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hence momentum coefficient 8, can be expressed by equation:
[v¥dA
_ A

o vi4

It should be noted that the solid of velocities varies along path x, as the mean

velocity does. This means that coefficient g is constant only for uniform flow.

Here it varies from section to section. This observation is based on the results of

experiments carried out by the author (1998) on non-conventional side weirs in
rectangular and U-shaped channels.

Total momentum dTI; introduced into the control space AV with a liquid

flowing through a flow section of area A4 in time dt — 0 assumes the following
value:

®)

dil; = BpAVidtTi = Bp Qudtl (6)

where Q = Q(x) — a discharge in cross-section I — I of the area A : Q = Av. The
momentum of the liquid leaving the interior of the control space through flow
section II — II of area A+ AA in time df — 0 is:

dfl;; = (B+ AB)p (A+ AA) (v + Av)dt T -
7
= (B+AB)p (Q+AQ) (v+ Av)dtT

At the same time (dt — 0) a mass of liquid flows out from the control space,
flowing over the weir length Ax at mean velocity vy. The velocity changes its
value and direction along the overflow edge. The momentum of the liquid mass
flowing over length Ax of the overflow edge is:

dily = By p Axqpdt Dy (8)

where g, — a lateral stream momentum (correction) coefficient, g, — a unit volume
flow over the side weir (per length Ax of the overflow crest).

The coefficient B, relates here to velocity U, and can be calculated using
Eq. 5 and integrating along depth (H — p) of the layer of liquid above the weir
(A = Ax cos 6(H — p) for Ax — 0). It thus refers to the profile of velocity v, at
the place indicated by the abscissa x, and not to a solid of velocities as in sections
[-Tand II - II.

It follows from Egs. 6, 7 and 8 that the following change in momentum will
occur in time dt:

dfl;; + dfl, — dfl; = d1l )

which, after ordering and neglecting the terms containing products of two quant-
ities with infinitesimal values, can be written as:

dil = p (B QAVT + B AQUT + AB QUi + BygsAxy) dt. (10)
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The unit surface forces here are: the hydrostatic pressure, increasing linearly
towards the centre of the liquid, acting perpendiculary to the areas of flow sections
I -Tand II - II and the shear stress 7 acting on the wetted surface of the channel’s
walls and the invert between sections I — I and II - II. The vector of a unit body
force is the gravitational acceleration vector g. The resultant (AF) of the surface
and body forces can be expressed as follows (Kotowski 1998, 2000b):

AF = —AAHpgT + AAx cos® p§g — PyAx cos® 7 (11)

where P, — the wetted perimeter in section I — L.

2.2. Equation of Motion

The vector of momentum variation in time dt, calculated using of Eq. 10, is equal
to the resultant vector of forces AF (Eq. 11) acting on the infinitesimal liquid
volume AV considered. This means that the projection of these vectors onto axis
x satisfies the following equation (after dividing both sides by pg AAx cos ©):

g% (ﬁQAU + ﬂtszu + ABQu + By U) _
= JBH L g e TET o
= sin e

where U - a coordinate of the longitudinal component U of the velocity vector
of a lateral stream along the direction of the mean velocity vector ¥ of the main
liquid stream in the channel, sin ® = § - bottom slope of the channel, P,t/pgA =
Sf — a hydraulic gradient at r = |7|. By introducing the above notations and
performing lim operations at Ax — 0 we obtain:

1

H
L (0% 192 40 1 parv) = 45 sy

dx
It follows from the equation of the continuity of motion that v = Q/A, hence:

dv 1 dQ Q dH
& Ad e 14
where bd H/dx = d A/dx, i.e. the area increment AA along path Ax occurs as the
result of an increase in height by AH, while the width of the overflow chamber
is b (Fig. 1).
From the volume flow balance it follows that (Kotowski 1998, 2000b):

00) = Qo — f abdx (15)
0
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where Qg — discharge in the channel at the beginning of the overflow chamber
(x = 0), and:
a9

2
- =~ = 34V H-p’ (16)

after inserting it into Eq. 13 and ordering we get:

iH  S-S-[es-ke QR + O %] L
i . f a7
x l—ﬂfgg

where k - ratio of the longitudinal component U and the mean velocity v(k =
U/v).

3. Dimensionless Form of Equation of Motion

Introducing the following dimensionless variables:

¢ =H/Hy;, £ =x/L; q =Q(x)/Qo (18)

where £ — dimensionless ordinate of depth of flow, £ — dimensionless abscissa of
length and g - ratio of discharge in overflow chamber, area A4 of the flow section
in the overflow chamber can be written in a generalized form (for the adopted
shape of the chamber cross-section). It has been assumed that above the crest
height of the side weir, the overflow chamber has a constant width equal to b
when the channel is prismatic in shape, e.g. rectangular channels, and a constant
width which is equal to the diameter D = b when the channel is e.g. U-shaped.
This conforms with the conditions encountered in sewage-engineering (Kotowski
1997: p > D/2; Fig. 1). Hence,

bH;
A = Ay+b(H - Hy) = Ay [I—I—A—OO (?;—1)] = Ay [Kos — (Ko —1)] (19)

where A4 — upstream surface area of the flow (x = 0), K — coeflicient which can
be defined as a similarity number of the channel shape (Kp = 1 for a rectan-
gular channel and Ky > 1 for other typical shapes of the channel, e.g. U-shaped
channels): Ko = b Hy/Ay.

After substitution of Eqs. 18 and 19 into Eq. 17 and after suitable arrangement,
we obtain the following dimensionless form of the modified equation of motion:

d 2d Fr?
dg _ Lo(S — x Spo) — [n 9’3% +4q Hg] W——(fg?l)_]’
d& = _ BFr? Koq?
1 [K,c—EKn—I)]-‘

{

(20)

where Ly - relative length of overflow crest (Ly = L/Hp), x - ratio of local
value of hydraulic gradient Sy to hydraulic gradient Syo at the initial section of
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the overflow chamber (x = §¢/Ss0), n — coefficient of momentum variation in the
mass decrement term which can be determined experimentally for the set weir,
channel shape and motion parameters (n =n £); n = 28 —kB), and g = q (&)
in the overflow chamber 0 < £ < 1 in conventional formulation:

§

2 L Hy/2g H

g=1-5u=E2 [ -yl 1)
Qo / .

where Py - relative height of overflow crest at the beginning of the side weir:
Py = p/Hp, Fry - Froude number at the first cross-section (x = 0) of the overflow
chamber:

Qo

Fro = ———. 2
T A vi T =
Assuming that the hydraulic gradient (Sy) in nonuniform flow can be calcu-
lated in terms of the Manning equation derived for uniform flow, and considering
the real value of H in the set cross-section of the overflow chamber (n = constant),
we can write:

(n Q(x))?
S = ———=—. 23
f P R:/;; (23)
Assuming furthermore that Sy = x Sy, and using Eqgs. 18 and 19, we obtain:
n qZ le n Qﬁ (24)
e 7 St 473
A1+ K¢ - (ﬂﬁ’iﬁ:’ﬂ!ﬁl) A (%)

where Syo — hydraulic gradient at the beginning of the overflow chamber. The
wetted perimeter (P;) in the cross-section of the overflow chamber with the uni-
lateral weir can be written as: P, = Py + (H — Hyp) = Py + Hp(¢ — 1). For the
bilateral weir P, = Py. And finally for 0 <& <1we have 1> x > 0:

_ [P+ He -D*? .
[1+ Ko¢ — D] P

(25)

for 1 > q = 1—g,, where g, - ratio of flows: g, = Q/Qp .

In general, the weir discharge coefficient p in Eq. 21, is affected by abscissa
x, as the head of the free surface varies along the weir edge, and so does the
contraction of the stream along the weir length. In practice, it is impossible to
determine the behaviour of the value of u along the weir edge. The rate of flow
over the side weir can however, be calculated when use the following equation
(Kotowski 2000a):

L
2
0= 5u/% [(H-pax (26)
0
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where u — discharge coefficient (mean) calculated for a weir of length L.
Incorporating the dimensionless variables of Egs. 18, and defining the dimen-

sionless variable of the length in a different way: &, =x/Hp , yields the following

expression which describes the derivative dQ/dx of Eq. 16 0<g,<ILp)as

dq 2 B 32
ke (RPN L 1 LY 2L PR - 27
& 3 “ D g (& 0) (27)
Defining 8

2 H

where 1) — dimensionless similarity number determined from the conditions of
motion at the beginning of the overflow chamber (x = 0), we obtain for &, = Ly:

Ly
u%f@—mww@=£1=m. 29)
/ Qo

Thus,

p= —po : (30)
Vo [ — Poy¥2d,
0

The dimensionless form of the equation of motion (Eq. 20) is an ordinary first-
order differential equation with the dimensionless abscissa £ (counted from the
initial section of the weir; 0 < £ < 1) as an independent variable, and the dimen-
sionless depth ¢ in the overflow chamber axis (generally, £ > 1 for the water rise
curve (Fig.1) and & < 1 for the drawdown curve along the weir) as a dependent
variable. This nonlinear equation cannot be solved analytically, and it is necessary
to use numerical methods. This requires knowledge of the functions that relate
the coefficients x (Eq. 25), B8, n and the term g (Eq. 21) to the dimensionless
parameters of motion (similarity numbers) g,, Lo, Po, S, Frg and Kp, and to
the independent variable £. The initial condition takes the form of £(0) = 1. The
ratio of discharge inside the overflow chamber is defined by Eq. 21, from which it
follows that a formula is needed to describe the weir discharge coefficient (Eq. 30).
The usefulness of Eq. 20 in describing the motion of a liquid in channels with
side weirs and throttling pipes for the adjustment of discharge from a storage
volume located after the overflow chamber has been verified by experiments.

4. Example of Solution of the Equation of Motion
4.1. Program and Description of Experimental Studies

Experiments were conducted on a hydraulic model (Kotowski 1998). Two basic
series of experimental investigations into unilateral and bilateral side weirs (in six
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design versions) were carried out. The first series was conducted on side weirs in a
channel with a rectangular cross-section (b = 315 mm; Fig. 1). The second series
‘involved U-shaped channels: circular in the lower part (up to a height equal to
half the channel diameter D = 287 mm) and rectangular in the upper part (above
this height). The bottom slope was constant (S = 3.3% , and so was the height
of the weir edges p > H,,(Q,)), i.e. p = 210 mm (= 2b/3) for the channel with
a rectangular cross-section and p = 204 mm (= 5D/7) for the channel with a
complex cross-section. Such assumptions are based on the results obtained by the
author in his previous studies (Kotowski 1990, 1997). Thus, the present study was
focused on the conditions of subcritical flow (water rise curve; Fig. 1), as well
as the conditions of free flow over the weir crest. A 2.6 m long throttling pipe
152 mm in diameter was mounted on a slope 6.6% f,. A gate valve was used for
discharge adjustment. The length (/) of the storage volume downstream of the
weir was assumed to be constant, /; = 600 mm (~ 2b = 2D) - after Saul and Delo
(1981). The model was made of PVC with a roughness coefficient in Manning’s
formula n = 0,01 s/m!/3. The weir crest was 5 mm wide.
The model studies included measurements of motion parameters in 12 cross-
sections located in the storage volume, overflow chamber and inlet channel:

e Variant 1 — a unilateral weir L = 600 mm (= 2b) in a rectangular channel,
e Variant 2 - a unilateral weir L = 900 mm (=~ 3b) in a rectangular channel,

e Variant 3 — a unilateral weir L = 1200 mm (= 4b) in a rectangular channel.

Three subvariants of discharge to the weir: Qg = 16.9, 33.8 and 50.8 dm?/s, were
planned for each variant. For each subvariant a different number of measurements
was planned for the coefficient of the separation of flow on the weir: g, = Q/Qq
=1.0,0.8, 0.6 and 0.5 at Qp = 33.8 dm?/s and g, = 0.8 at Qp = 16.9 and 50.8 dm?/s.

e Variant 4 — L = 2 x 600 mm, in the range as above (bilateral weir in a
rectangular channel b = 315 mm).

In the second series of experiments for side weirs in a U-shaped channel (b = D
= 287 mm) the following variants were investigated:

e Variant 5 — a unilateral weir L = 1200 mm, in the range as above,
e Variant 6 — a bilateral weir L = 2 x 600 mm, in the range as above.

A total of 36 combinations of weir design and hydraulic parameters was in-
vestigated using the model. In the adopted range of changes of Qg and ¢,, the
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Reynolds number (Re) in the throttling pipe varied as follows: 23800 < Re <
129500, whereas the Froude number (Eq. 22) in the inlet channel directly be-
fore the weir fell within 0.14 < Fro < 0.35 in the rectangular channel, and within
0.17 < Frg < 0.46 in the U-shaped channel.

4.2. Important Experimental Results

The values of the momentum coefficient B were established in terms of Eq. 5.
Integration was carried out after the areas of partial sections between consecutive
local velocity isolines in the investigated cross-section of the channel had been
calculated. Local velocities (v) were measured with a hydrometric current meter.
The interpretation of the variability of coefficient 8 was limited to three variants:
3,5 and 6 at Qy =33.8 dm?/s and gr = 1.0, 0.8, 0.6, 0.5, which involved about 5600
local velocity measurements (in 88 cross-sections). Measured profile of velocity
in cross-sections along the longitudinal axis of the channel was shown in Fig. 2
— for example in variant 5. In the adopted range of model parameter variations,
it was the ratio of flows (g,) that had the strongest influence on the behaviour
of B along the length of the channels with side weirs (in inlet channel, overflow
chamber and storage volume). A statistical measure for the coefficient was found
to be the Froude number (Fig. 3), which - after suitable transformation - gives:

B = 1.06(Fro/Fr)"* (1)

where 1.01 < B < 1.6 (correlation coefficient R = 0.92 and standard error § =
0.04). For coefficient B (for the solution of the equation of motion), use was
made of another formula, which related g to £(0 < £ < 1):

B = 0.287 +0.180g, + 0.116¢7 + 0.807Wy — 3.43W72 — 0.622¢ + 0.5T3expt. (32)

To calculate the discharge coefficient (1) Eq. 30 was used for 36 free-surface
profiles (for 6 variants) measured along the longitudinal axis of the overflow
chamber. The profiles were approximated with a third-degree polynomial as

3/2
@€ = P02 = (Wo+ Wi, + Wag2 + Wi ) (33)

where W) — free term of the polynomial (Wy = 1 - Py): Wy = (H — p)/Hy. From
Eqgs. 20, 30 and 33 the coefficient u is a function of the dimensionless parameters
= u(gr, Vo, Lo, Wo, Fro, Ko). The partial dependence of y on particular motion
parameters was tested and it was found that (Fig. 4):

p = 0.644 — 0.052g, + 0.0088Lo + 0.035W — 0.075Frg — 0.065K, (34)

as a result of multiple regression at the significance level of 0.05 (Kotowski 1998)
at 052 < < 0.59 and & = 0.55 for subcritical flow (Frg < 1). Similar values
were reported e.g. by Ishikawa (1984) and Uyumaz (1997).
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Fig. 2. Example of profile of velocity in 10 cross-sections measured along the longitudinal axis of
the channel in variant 5 (U-shaped channel, L = 1.2 m, Qy = 33.8 dm/s and g, = 0.8)
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Fig. 4. Regression of weir discharge coefficient u from dimensionless parameters of motion g,
Ly, Wy, Fry and Ky (in variants 1 =+ 6)

The equation of motion (Eq. 20) for the investigated side weirs with a throt-
tling pipe were solved in terms of the formulas (Egs. 21, 25, 32 and 34 for similary
numbers g,, Lo, Py, Wo, Syo, F. ro and Kp) derived in this paper. The last coefficient
of Eq. 20, denoted as n = 28 — kB, was calculated directly from Eq. 20, since the
water-surface profiles along the longitudinal axis of the overflow chamber were
measured, and the other coefficients were known. Coefficients 8, and k could
not be calculated on the basis of model measurements as in the adopted model
scale the weir layer was several centimeters thick. Thus, it was impossible to dir-
ectly measure the distribution of the velocities of the side-discharge streams (8).
The values of n calculated in terms of Eq. 20 were related to the dimensionless
parameters of motion Ly, Wo, gr,, Fr&l and Kjy; was normalized to the interval
< 0.1 > (Fig. 5a + e), as well as to the abscissa & (Fig. 5f). It was now possible
to adopt appropriate classes of functions. After approximation, using Chebyshev
polynomials normalized to < 0,1 >, the equation describing the behavior of »
over dimensionless overflow chamber length 0 < & < 1 assumes the form

n = 6.46 +5.61g, — 1.30g> — 0.0531Ly — 59.2Wp+
(35)
+80.4WZ — 4.94Fr} — 0.460K, + 2.11& — 1.27¢>

for the following ranges of variation: 0.3 <n <22, 05<¢q, <10, 1.8< <
5.1,0.13 < Wp < 0.35,0.65 < Py < 0.87,0.14 < Frg < 0.46, 1.0 < K < 1.15, 0.0001
< 85, <0.001.

The accuracy (related to measurements) with which the equation is solved
(and thus the quality of the proposed mathematical model of the flow of a li-

quid in the overflow chamber of the investigated side weirs with a throttling pipe)
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is illustrated in Fig. 6. The figure shows a diagram of dimensionless water sur-
face height ¢ (¢) along the longitudinal axis of the overflow chamber (0 < E<1,
calculated numerically (the initial condition takes the form of £(0) = 1) for vari-
ant 5: U-shaped channel, L = 1200 mm, Qp = 33.8 dm%/s and ¢, = 0.8. Figure
6 shows that conformity between calculated (numerically) and measured results
(with a depth measuring error) is satisfactory. The water rise curve for the weir,
calculated in terms of the mathematical model, describes the hydraulic model
measurements within the water-surface height measuring error.

Fig. 6. Dimensionless elevation of water-surface ¢ along overflow chamber 0 < & < 1, numerically
calculated (—) using equation of motion (20) and measured in madel ¢ with marked measuring
error (variant 5, for g, = 0.8, Ly = 4.73, Py = 0.803, W) = 0.197, Frg =0.112, Ky = 1.14, Sy =
0.000578 and u = 0.552)

5. Conclusions

Using on the principle of conservation of momentum, a new form of the equation
of motion (Eq. 17) which describes the free-surface profiles in the overflow cham-
ber, has been derived. It differs from the available equations of motion in that it
incorporates a corrective mass decrement term (28 — kB,)[Q/(g A%))d Q/dx and
a momentum variation term [Q?/(g A*)]dB/dx.

Studies of local velocity distributions in overflow channels and chambers dif-
fering in cross-sectional profiles have shown that momentum coefficient 8 varies
markedly along the weir, as regards its value (1.01 < 8 < 1.6) and the value of its
derivative df/dx. And this indicates that the use of the new form of the equation
of motion is correct from the point of view of the physics of the phenomenon.

The dimensionless form of the modified differential equation of motion (Eq.
20) describes liquid flow in the overflow chamber of a defined geometry. Equation
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20 applies to the hydraulic design of a side weir with a high crest p > H,,(Qy)
and a throttling pipe. Model studies have substantiated the accuracy of Eq. 20
in determining the value of d¢ /d& (and consequently the value of d H/dx which
is within the measuring error for height H in physical models). A mathematical
model which describes the behavior of such weirs, as well as a numerical procedure

enabling their dimensioning, has been developed in a previous study (Kotowski
1998).
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