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Abstract

Complete solutions of saturated slopes in the limit state, in the aspects of statics and
kinematics, are presented. The proposed methods can be applied to the calculation
of stress fields and velocity fields and the estimation of the limit load for two ba-
sic (associated and non-associated with linear Mohr-Coulomb yield condition) flow
rules. Samples of calculations for diverse saturation conditions appeared in slopes are
included. The proposed methods will contribute to the extension of the use of limit
state methods in engineering practice.
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1. Introduction

Earthworks, highway and water engineering projects provide an incentive for the
creation of new technical conditions for earth structures, as regards: their basic
parameters, fittings, the safety and environmental protection, and the assessment
of the load capacity and stability of earth structures. Efforts are made to ensure
the optimal design of slopes and embankments and the accurate prediction of
their behaviour.

About a hundred methods of dimensioning slopes can be found in the liter-
ature. Very few attempts, however, have been made to evaluate the accuracy of
such an impressive number of methods. The reason is the highly complex nature
of the slope sliding phenomenon, which leads to the idealization of adopted phys-
ical models. Limit equilibrium and limit state stress methods predominate in the
group of theoretical slope dimensioning methods.

The former methods presume that there is a limit state on some surfaces of
a localized slip. A certain mechanism of deformation or failure along the slip
surface is assumed and the force system associated with the mechanism is ana-
lyzed (Bishop 1955, Bishop and Morgenstern 1960, Morgenstern and Price 1965,
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Spencer 1967, Izbicki and Mréz 1976, Chowdhury 1978, Sarma 1979, Janbu 1987).
In the case of the so-called slice methods, there are proposals for estimating the
stress on slip surfaces.

The limit state stress methods are based on a rigid, perfectly plastic model of
the medium and assume that the limit state condition is fulfilled at each point
of a considered area. The limit state theory in its static formulation enables the
determination of the relationships between the shape of a slope, the limit load
of the overburden and the state of stress in the whole mass (Sokolovsky 1960,
Dembicki et al. 1964, Salengon (1972)). The kinematic method consists in seeking
permissible deformation velocity fields corresponding to different mechanisms of
flow (Drucker and Prager 1952, de Josselin de Jong 1959, Davis 1968, Drescher
1972, Chen 1975, Derski 1988, Drescher and Detournay 1993, Michalowski 1995).

The method mainly applied for seeking exact solutions is that of characteristics.
For that method there are no solutions considering the field of the seepage forces.
No comprehensive discussion of boundary problems of slopes in the limit state
for different soil-water conditions can be found in the literature.

The aim of this paper is to present the complete solutions of slopes in the limit
state, in the aspects of statics and kinematics for diverse soil-water conditions and
boundary conditions appearing in slopes. The proposed methods will contribute
to the extension of the use of limit state methods in engineering practice.

2. Statics in the Limit State
2.1. Homogeneous Soil Medium

The limit state theory distinguishes two basic types of problems in the case of
slopes designing. The first type is a generalization of the bearing capacity problem
where the shape of a slope is prescribed while the limit value of the load of its
crest is to be determined. In the second type, the predetermined load on the crest
is given and the stable slope shape is to be determined assuming that in the soil
mass a limit equilibrium state occurs.

The problem of a slope profile determination is considered. An analysis of
the quasi-static problem of the plane state of strain includes equations of equilib-
rium and the linear Mohr-Coulomb yield condition which represents the closest
to experimental results hypothesis concerning the reaching of the state of equilib-
rium. Appropriate transformations lead to a system of two hyperbolic quasi-linear
partial differential equations, written in a simple form (Sokolovsky 1960):
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The above equations are solved by the method of characteristics. The differ-
ential equations of characteristics and the relationships along them assume this
form respectively:

d d
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dx dx
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Z — the inclination of algebraically greater principal stress oy to axis x,
¢ - asoil internal friction angle,
Y. ¥y — the components of the dead weight,
a, 8 - the first and second family of characteristics, respectively, Fig.
1(a).
The stress components expressed by quantities o, ¢ are:
oy =0(l+singcos2f) —ccotgp, oy =0(l—singcos2s)—ccotg,
3)

Tyy = o sin¢gsin 2Z.

The solution of the boundary problem of the slope profile determination con-
sists in the simultaneous integration of Egs. (2). This leads to the determination
of the field of characteristics and the values of ¢ and ¢ in net nodes for the
prescribed static boundary conditions. The density of the net of characteristics
increases.

The internal equilibrium condition and the boundary condition must be ful-
filled also in the region situated outside the deformation field in the rigid zone,
the plasticity condition must not be violated, but it has not to be satisfied, because
the stress state below the plastic limit is admissible. The extended net of char-
acteristics shown in Fig. 1b results from the solution of the initial-value problem
along line AH and the characteristic problem, defined by known values, along
lines AG and ACDB.

The determined stress field was confined, starting from point B, by stress
discontinuity line BEFIL. The stress field below this line was constructed in a
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Fig. 1. Computational scheme for slope: (a) net of characteristics; (b) extension of stress field
determined for slope plastic flow regions OBDCA on to adjacent rigid zones
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way which ensured that the limit state was not exceeded at any place, no tensile
stress occurred anywhere and the general directions of the stresses coincided with
axes x, y. The direction of the discontinuity line at points where it intersects the
characteristic of region BAGJ was determined taking into account the condition
of constancy of stress oy at specified depth x.

The state of stress in vertical elements “1” and “n” with infinitely small width
dy put up under point B, n is defined by these relations:

1 —sing

Fx(l) = U;(I) +yX1, oy = J/xlm,

Ox(my = U;(n) + VXn, (4)
where o* denotes the stress acting imnediately under the discontinuity line. The
increase in vertical stress under the slope was assumed as lineal function of the
depth.

For any point of the discontinuity line we can determine the parameters shown
in Fig. 1b:
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where H is the tensile strength of the soil in the triaxial stress state, given by

7= o}y (1 —sing)

2sin g

The state of stress below stress discontinuity line BEFI does not exceed limit
state (F(oj;) < 0) of the medium.

2.2. Solution for Seepage through an Earthen Structures

The water conditions on the slopes and in the subsoil of the slope are a ma-
jor factor determining the stability of such structures. Water filtering through the
body of the slope changes the physical and mechanical properties of the soil, pro-
ducing an extra load acting along stream lines on the soil skeleton. For steady
non-pressure filtration, the equations of (flow) dynamics and the kinematic con-
dition (liquid continuity equation) can be reduced to this homogeneous potential
Laplace’s equation:

V'H = Vp,, =0, (6)

where H is a hydraulic head function, p,, is water thrust.
Equation (6) can be solved in different ways. Numerical approximation is re-
commended for more complex shapes of filtration areas and boundary conditions.
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Numerical approximation consists in replacing the potential changing continuously
on the contour of a flat area with a system of values at the nodal points of a net
plotted on this area. The solution to the first boundary problem for the Laplace
equation is reached by replacing the derivatives with appropriate difference quo-
tients. The obtained equation

Puw +P1= +pm_ +pw
Puwy = : = 4 : . (7)

used until convergence is achieved at all the nodal points constitutes a basis for the
Liebmann iteration. Long and time-consuming iterative procedures, particularly
near the filtration area contour, which does not coincide with the edge of the net
area, can be handled only numerically.
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Fig. 2. Computational scheme for boundary condition of water saturated soil mass dewatered by
horizontal flat draining system

The filtration forces included in the mass forces in Egs. (1) enable us to solve
the problem of the stability of a slope saturated with water (Fig. 2):
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Yo S yw% - components of seepage forces,

s % ~ the components of the dead weight with water thrust in-
cluded,
3 — the unit weight of water.

If the hydraulic gradient head is zero, then Egs. (8) are reduced to (1).

3. Kinematics of the Limit State

The kinematics determines the state of the velocity of particles of the medium
described by a rigid-plastic model. It assumes a physical relationship linking stress
tensor oj; to strain rate tensor &;;:

. BG(_G,'J')_ 1 /0y 0y
=X doij E(E-I-a—xi ’ (9)

where A is a non-negative (can be zero), v; are velocity vector components and
G(ojj) is the following plastic potential

Glojj) =01 —oy+ (o1 —op)siny —2ccosy =0 0<y < ¢. (10)

For yr = ¢ we have G(0;;) = F(o; ;) and Eq. (10) represents the associated flow
rule, for v < ¢ Eq. (10) represents the non-associated flow rule, v is a dilatation
angle which determines change in the volume of the medium. If the isotropy
condition and relations (9) and (10) are used, differential equations of velocity

characteristics and relationships occurring along them are obtained (Jenike and
Shield 1959):

% =tan(¢ +u*) dvy — (vetany —vg secy)ds =0; o,

(11)
d
é =tan(¢ — pu*) dvp + (vgtany — v secy)ds =0; B,

where vy, vg are projections of the velocity vector on to appropriate directions
of characteristics o’ and g/, u* = § — 35—

The linearity of Eqgs. (11) is the reason why the field of velocity characteristics
does not depend on the kinematic boundary conditions, but only on the form of
the field of stress characteristics. A boundary condition assuming a rigid block
with known velocity v(y) of its points at the top of the slope is proposed. This
may correspond to loading with a rigid foundation.

The problem is analysed for the general case where the non-associated flow
rule is applied. The assumed kinematic boundary conditions were analysed for the
problem of slope profiling. The lineal growing load on the slope crest is placed
on the rigid block, Fig. 3. In particular case for 8; = 0 the load is uniform. The
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Fig. 3. Determination of velocity field and dissipation power for associated flow rule: (a) general
scheme; (b), (c) subsidiary sketches

starting point for this analysis is a net of characteristics obtained from the static
solution. That net determines the range of the motion zone in the soil mass.
The boundary between the motion zone and the soil at rest is determined by
the velocity characteristic drawn from point A to B on the slope profile. The
characteristic AB is also the discontinuity line.

The rigid block is moving with velocity v, along OA under the influence of
the load. Component v, (y) of the velocity of this block is given by this relation:

(Y4 —Y)vey tanéd;
= .

(12)

uy) =1+

Boundary conditions (12) along OA may be regarded as kinematically per-
missible since:

; tan g ; sinyr + 1) tan
0.8 ¥ oy QR EEY Byt BREJINRL ) - - i
cos cos ¥
. . ) tan é;
£=2¢1+é& =—2tané tany, A= et (14)

A correct kinematic solution should provide for the flow of the material, satisfy
the boundary conditions, and assure non-negative increment of work dissipated
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at every point in the whole area of plastic flow. Because of the assumed absence
of friction at the block-medium contact, the power dissipated along OA is equal
to zero for any velocity of block v(y).

Along section AC’ of the discontinuity line and within the volume of area
OAC’, the dissipated power is equal to:

DALC,=—_————1_X
Sin p* cos u*
in¢ —sin ¢ g singy w
§in ¢ — sin 5 sin sin
|+ g e o0 Jre +at LT 0
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X ¢ tan lsecw[cosqb(yc zxc tan u ) (1 1+sn¢ )+ (16)
1(q tan p* 1, .\ Sin¢ — sinyr
L . —_ — dm— 1 4 1 a1
+q(2xcyc+yc 3 Xc —39%c anu) 1+sing 20

For the associated flow rule (when ¢ = ¢) Eqgs. (15) and (16) are reduced to
(17):

D = e xc > 0.

i
DQAC = 4xctand; (yc - Exc tan M) > 0.

A computational scheme for the determination of the velocity field and the
dissipation power in area OCDB of the slope (for both flow rules) is shown in
Figs. 3 and 4.

The net of characteristics determined for the stress field is at the same time a
net of velocity characteristics for the associated flow rule. Taking into account the
velocity characteristics and the kinematic boundary conditions along OA determ-
ined according to Eq. (12), the mixed problem for area OAC and the characteristic
problem for area OCDB are solved.

The system of Egs. (11), written in a differential form, is put to use in the
numerical determination of the velocity field at the nodal points of area OCDB.
Then the solution along OC and relationships along discontinuity line CDB in
this form:

cos @
sin

Va =

exp [(.’,‘ - %) tanqb] vg =0 (18)
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Fig. 4. Determination of velocity field for non-associated flow rule: (a) general scheme;
(b), (c) subsidiary sketches (“1” net of stress characteristics, “2” net of velocity characteristics)

are used. The computing accuracy is improved by applying the mean function
method.

For the non-associated flow rule, the net of velocity characteristics does not
coincide with that of stress characteristics. It does not depend on the kinematic
boundary conditions but only on the form of the field of stress characteristics.

Within area OAC’ (Fig. 4), the net of velocity characteristics consists of two
families of parallel straight lines deviating from the stress characteristics by an
angle equal to 0.5(¢ — ). The net does not contain a fan.

A velocity field for the non-associated flow rule is determined in a similar way
as for the rule presented above associated with the condition of plasticity. The
velocity discontinuity line here is characteristic o’ (AC'C”D'B’) and the velocities
along it are as follows:

cos

vy = exp (s - %) tan w] vy =0, (19)

sin p*

After determining the velocity components (v, and vg or v, and vg) at each
node of the net of characteristics (for area OC'C"D'B’or OCDB), numerical calcu-
lations of the dissipation power for the two flow rules, respectively, are performed.
A method similar to the finite element method is recommended for this purpose.

The dissipation power values in areas OAC and OAC’ are given by Egs.
(15)=(17). The dissipation power in the remaining area is approximated by an
unknown velocity function for area OCDB (OC'C"D’'B’) using a series of values
v(x, y) calculated at the particular nodal points of the net of characteristics.
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For a current point of an area divided into triangular elements with vertices
r,s,t, we can write:

Ur
ucx,y>={ v, ) ]=[Nr,Ng,N:][ vy ] (20)

Uy(x~}’) v
1

where the assumed linear shape functions, given generally for the m-th element,
are defined by the following relations:

a,x +b,y +c¢,
2A
(2A is a double area of triangle r, s, ¢ and coefficients 4,, ..., ¢, are obtained
through the cyclical transposition of the indices).
We can determine the dissipation power in a finite number of elements of
area OCDB or OC'C"D'B'’ by using the following relations:

Ny= 1 )/2”,59{ (21)

DOCDB—cosqbZ\/ (6 — )" + 4 () i (22)

for the associated flow rule or

OC'C'D'B’ _
Dy, =

23
= Z\/ — &y,) 244 (é(x_v),.)z [cos ¢ + (0; — cot@) (sing —sinyr)]Ah 23)

for the non-associated flow rule, where 4 is the element’s thickness equal to unity,
o; is the stress in centroid S(x,, y,) of triangular element r, s, f.

The dissipation power values along discontinuity lines CDB and C'C"D'B’ are
calculated by applying the following formulas:

DSPB = cos ¢ 3 vg Al - 1,0,
. m =l (24)
DECDE = gec wgl v, [cOS ¢ + (T — cot@) (sing —sin y)] Al - 1,0,

where & is the stress in centroid S(x,, y,) of triangular element r, s, r and Al is
the area of this nodal triangular element.

The total dissipation power is the sum of the volumetric dissipation of OACDB
or OAC'C”B’ and the dissipation along discontinuity line ACDB or AC'C'D'B’
for the two flow rules, respectively. Whereas power of the force of gravity is
expressed by this relation:
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n
L= "u, (&, ¥5)Ai - 1,0, (25)
i=1
where vy, (x;, ys) is determined from formula (20).

The upper estimate of limit load gz when the flow rule associated with the
condition of plasticity is applied and the estimate of load gy, for the non-associated
flow rule can be determined on the basis of limit load capacity theorems (Chen
1975, Drescher and Detournay 1993). If the power balance equation is used and
gk(y) = const. and g, (y) = const. are assumed, the following is obtained:

a | _ 2(D-1L)

G | yaQ+yatandy)’
where D is the total internal dissipation, the sum of the volumetric dissipation of
OACDB and the dissipation along discontinuity line ACDB.

Dependence of kinematic estimates of load g, on the dilatation angle yr was
shown in Fig. 5, where 77 > 2 is a numerical multiplier and g, is the static load.
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Fig. 5. Dependence of kinematic estimates of load g, on the dilatation angle ¥

4. Results of Numerical Calculations and Samples

The prediction of optimum shapes of slopes (newly raised or made in virgin soil),
the forecasting of their behaviour and the assessment of the stability of the slopes
are major problems in civil construction and mining. Solutions to them should be
sought on the basis of the mathematically exact theory of limit states from which
relationships between the shape of the slope, the limit loading of the overburden
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and the state of stress in the soil mass follow (Dembicki 1967, Salengon 1972). The
final solution will be affected by the diversity of soil-water conditions, the values
of geotechnical parameters and the geometry and loading of the earth structure.

The solution of the boundary problem of the slope profile determination consists
in the simultaneous integration of Eqgs. (2). This leads to the determination of
the field of characteristics and the coordinates of the nodes prescribes the slope
final shape. Figs. 6, 7, 8 show the influence of a change in the basic geotechnical
parameters of the soil (soil bulk density y, cohesion ¢, angle of internal friction
¢) and in the overburden load on the shape of the profile of a slope with limited

stability.
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Fig. 6. Influence of ¥ on shape of slope’s profile [g > gmin = 2ccos¢p/(1 — sin ¢)]
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Fig. 9 illustrates a solution to the statics of a homogeneous infinite slope. The
solid line represents slope profiles obtained from the numerical solution of system
Egs. (1) and the broken line marks slope profiles calculated by applying Eq. (27)
proposed by the authors:

2¢(1+sing) (1, 2 , 1+6tan’ ¢ ,
ek Sl ik £ ('Y R sk Bt
(1 —sing) (2 g7 e 9T
Ly 2.5 1+6tan’¢ ,
g e -l )

(27)

e 1 In (yx +q +ccotg)(1l —sin ¢)
~ 2tang ccotg(l + sin¢)

_ cotg q 1—sing¢
bo == In[(ccotc,b +1) 1+sin¢::| =8

Equation (27) resulted from an analysis of the state of stress in three plastic
areas of the slope. An equation of the slope profile was obtained, which was then
rearranged by replacing it with a finite number of terms of a series expansion. Four
terms of the expansion of the integrand into the Maclaurine series are enough to
apply formula (27) to engineering calculations of the stability of slopes.

The equation proposed by the authors yields profile curves coincident with
the numerical solutions up to the height of 10 ¢/y (in medium cohesive soils
and firm cohesive ground this height may reach 20.0+30.0 m). Above this height
the accuracy of the obtained results decreases as the slope’s height and load g
increase, but it increases with increasing ¢ and c.
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Fig. 10 shows examples of kinematic solutions expressed by dimensionless
quantities x’, ¥y and v, (defined in the figure). It follows from them that the
choice of a law of plastic flow determines the extent of the zone of motion and
the values of the velocity and load kinematic estimate vectors.

=35

vl y) =1+tand( NRA
Vo=1,0
qk=7,1l.c=q

v=4 velocity scale b

Fig. 10. Kinematic solution: (a) velocity field in the case of the associated flow rule;
(b) velocity field in the case of the non-associated flow rule
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4.2. Saturated Slopes

Three cases were considered: water filtering through the soil mass of the slopes,
fully saturated slopes and slopes sprinkled by rainfall. The examples of solutions
obtained for analyzed cases in Figs. 11-13 are presented. The slope angle of the
profile of saturated soil mass in the limit state depends on: the values of the
body’s and the subsoil’s geotechnical parameters, the filtration area geometry and
the overburden load. The comparison of the profiles of slopes calculated for the
diverse water condition is presented in Fig. 14. Saturated slopes are much gentler
than the ones without filtration.
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Fig. 11. Solution of the limit state statics of the slope located on the impermeable subsoil with the
groundwater filtering through the soil mass

Complete presentation of all considered cases is not possible. Comprehensible
analyses of the limit state for different water patterns in the soil mass and ground
permeabilities can be found in papers by Stilger-Szydio and Kisiel (1980) and
Skoczylas and Stilger-Szydto (1986).

4.3. Results Assessment

Due to limited available literature on the limit state analysis for slopes with the
water flow, verification of the present work is possible by comparison with the
published solutions of the slope dimensioning problem for dry soil masses. For
that comparison we calculate the bearing capacity factors N, and N, respectively
defined in foundation engineering by:
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characteristics, thick lines — water equipressure lines
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Fig. 13. Solution of the limit state statics of the slope, sprinkled by the rainfall
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Fig. 14. Comparison of the profiles of slopes calculated for the diverse water condition

N, =[N, —1] cot ¢,

28)
T ¢ (
N, =" ¥ ?tan (Z + f)

using the method of characteristics for homogeneous soil medium Egs. (1), (2).
The N, values, indicate the share of the weightless soil in the entire bearing
capacity, obtained here agree well with those by Meyerhof (1951), while Vesic’s
(1975) reduction relation becomes very conservative as the slope gets steeper
(Fig. 15).

The present N, values, indicating the influence of dead weight of soil in the
entire bearing capacity, are lower than others, given by Mizuno et al. (1960),
Graham et al. (1988). The comparison of N, values are shown in Fig. 16. These
results are obtained from static solution and the are the lower bound. The present
solution is on the safe side.

5. Conclusions

This work presented solutions for analysis of the saturated slopes in the limit
state. This is the essential contribution to the development of the theory of limit
load-carrying capacity. A wide range of boundary conditions was considered by
varying the soil parameters and water-soil conditions.
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Fig. 15. Comparison of N, values with those of Meyerhof (1951) and Vesic (1975) for different
friction angle (after Sarma and Chen 1995)
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Fig. 16. Comparison of N, values with those of Mizumo et al. (1960), Graham et al. (1988) and
Sarma, Chen (1995) (after Sarma and Chen 1995)
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The basic problem of a slope profile determination was considered. Presented
static and kinematic solutions, solved using the method of characteristics, can be
applied to the calculation of stress fields and velocity fields for associated and
non-associated with the linear Mohr-Coulomb yield condition flow rules. They
can be successfully applied for practical purposes. The static solution leads to the
determination of the field of characteristics and prescribes the shape of slopes
in the limit state. The kinematic solution based on the velocity hodographs can
supply information as to the slope behaviour and its deformations at the initial
moment of plastic flow. The averaging, general angle of the slope in the limit state
can be used to estimate of the factor of safety value (FOS) defined as the ratio
of the limit angle tangent to the real slope angle tangent, in a similar way to the
case of the unlimited slopes.
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