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Abstract

In the pressure form of Richards’ seepage equation, the differential water capacity
function is used and calculation of its values is necessary to solve the equation. The
course of function variability was determined basing on the soil moisture character-
istic. To obtain simpler solutions, the water capacity was expressed as a function of
moisture. Using van Genuchten and logistic functions, its course for six soils available
in the relevant literature was determined. Two sandy soils were used to discuss the
water capacity hysteresis and simple formulae were proposed, enabling the coefficient
for scanning runs to be determined.
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Notations
c — water capacity (differential water capacity) [m~!],
cd ~ water capacity for drying [m~!],
€ ~ water capacity for wetting [m™!],
G — parameter determining the curve slope [-],
hy — capillary head [m],
hp - suction head at the moisture characteristic point of inflexion [ml],
h ~ suction head [m],
H — hydraulic head [m],
k — capillary conductivity [m/s],
m,m; — exponents [-],
t - time [s],
x,y,z — orthogonal coordinates [m],
g - saturation rate [-],
0 ~ volumetric soil moisture content [m>/m?],
6, - soil moisture at full saturation [m*/m?],
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o, — irreducible soil moisture content [m? /m3],
Oy — soil moisture content at the reversing point [m*/m?].

1. Introduction

To describe water flow in a porous medium, Richards’ equation is used (Richards
1931):

V(NH):i(kaH)+ : (kaH)+ ’ (ff””’):gE (1)
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giving a precise description of isothermal seepage in both saturation zones.
However, it cannot be solved directly, because of two unknown variables which
appear in its standard notation: hydraulic head H and moisture §. These two
variables are interrelated by moisture characteristic 6(hs) (as H = z— hy). Hence,
a solution may be obtained substituting one of these functions for another:
H = H(0) or 6 = 6(H). In this way the moisture diffusion equation or the gener-
alized seepage equation (conductivity equation) was obtained. The first is known
as the Buckingham equation (Buckingham 1907). An alternative approach consists
in replacing the capacity component in Richards’ equation (1) by the function of
hydraulic head H. This can be done by treating moisture content 6 as a composite
function:

06 a6 9h 06 a8 (z— H) 06 0 H oH
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where c(hs) = —036/0h; is capillary capacity (Richards 1931) (differential water
capacity — Kovécs 1981), being in fact the derivative of moisture characteristic
versus suction head h;. Such a form of the capacity component had been intro-
duced by Richards himself. The parameter ¢ can be generalized for the saturation
zone where it is equivalent to the specific capacity (specific storage — Hantush
1964). So the movement equation assumes the following form:
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As hydraulic head H changes in the both zones of saturation, seepage descrip-
tion is possible in both the vadose and the saturation zones, which results in the
term generalized seepage equation. Also a term conductivity equation originating
from thermodynamic analogy is used. The functional parameter c is not constant
at least in the vadose zone. A description of its variability is the subject of this

paper.
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2. Soil Characteristics

Determination of the nature of variability of differential water capacity requires
knowledge of the moisture characteristic, i.e. the relationship of moisture capacity
versus suction head 6(h;). However, calculation of the coefficient from an em-
pirically established characteristic may be difficult. Individual measurements are
burdened with hazard errors and the derivative calculated, may lead to chaotic
values of the coefficient. To obtain clear relationships a mathematical function has
to be fitted to the characteristic earlier. This will also make it possible to describe
the capacity coefficient with a formula.

In the relevant literature a dozen empirical formulae, describing the mois-
ture characteristic with differing precision, can be found. The simplest of these,
describing the saturation rate as a power function (Corey, Corey, Brooks 1965)
or exponential function (Averjanov, Golovanov, Nikolskij 1974), have an applic-
ation restricted to low moisture contents, while high moisture contents produce
non-physical values. Thus they cannot be used to describe water capacity in the
whole range of moisture content. This goal can be attained by more sophisticated
formulae enabling the moisture content to be calculated for an arbitrary suction
head only.

Functions describing moisture characteristics are expected to have two asymp-
totes: for Ay — 0 6 — 6, and for by — oo 6 — 6,. Here the symbol 6, denotes
the maximum moisture content for a main wetting branch equal to the effective
porosity n, while 6, is the minimum moisture content corresponding approxim-
ately to the value of residual moisture for the lowest suction head that occurs in
nature. To simplify the form of the formulae presented, the moisture content is
described in the normalized form:

0 =36, —6)+06, (4)
where: ¥ = /=% - saturation rate of soil, typical for a given process, with

asymptotes for values # = 1 and ¢ = 0.

This notation makes possible the application of formulae to describe drying or
wetting characteristics. Replacing by moisture 6; in reverse point the value 8, for
secondary draining or 6, for secondary wetting, one can also describe scanning
curves (Kaluarachchi, Parker 1987).

The most famous formula meeting these requirements is the van Genuchten
formula (Genuchten 1980) in the form:

9= : )

[1+(c2)"T

where: C, m and m; — empirical parameters determining the shape of the char-
acteristic.
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The formula is valid for h; > 0. For m = 1 a simpler form of the formula is
obtained, used in Momii’s work (Momii et al. 1988) and giving an almost identical
curve. For high values of i, (hs > hy) formula (5) reduces to Corey’s power form.

As a generalization of exponential formulae, the following formula for a lo-
gistic curve never used before in the pertinent literature, was adopted in this

paper:
B 1
- ll +exp[C %]]m

It affords a graph similar to the van Genuchten formula and can be used
for each suction head. Unfortunately, for some soils m values are so low that
numerical calculations are difficult. For sandy soils m values are close to 1, which
makes the application of simpler formula, used in particle physics for description
of potential barrier, possible:

(6)

5= e (7)
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The formula gives an antisymmetrical curve with the inflexion point for ¢ =
0.5 and it has easy interpretable parameters: h, = h; (9 = 0.5) is the suction head
in the inflexion point and C is a parameter determining the slope of the curve.

Many authors use other functions that enable description of a particular meas-
ured moisture characteristic as exactly as possible, but the form of these functions
is fitted to the data. To illustrate the formulae presented, data available in the
literature on the moisture characteristics for some different soils were used. For
two sandy soils wetting and drying characteristics were determined (Figs. 1 and 2)
and for four clayey soils wetting characteristics only (Fig. 3). The parameters of
the van Genuchten function were estimated from empirical data. For one sandy
soil, the logistic curve was also used (Fig. 1). Estimated parameters are shown in
Table 1.

The parameters have been fitted by the trial-and-error method to give the
smallest sum of squared errors. However, values of limit moisture 6, and 6, were
established according to the nature of the described process, to avoid deformations
in its run. Considering the trouble with capillary height determination, the quotient
of C parameter and height h; was calculated.

3. Differential Water Capacity Functional Parameter
The differential water capacity of soil ¢ is defined as

a0 a
C(hs) ="'%=_(9n—9r)ﬁ;- (8)
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Fig. 2. Moisture characteristic for Rehovot sand
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Fig. 3. Moisture characteristics for clayey soils

It can be presented as a function of suction head A or a function of moisture
6, which has several advantages. First of all the second parameter of Richards’
equation, the capillary conductivity k, is shown as the function of moisture. In
such a way the problem of hysteresis is avoided, which can be neglected for
the k(6) relationship, but is significant for k(h;). The hysteresis for the moisture
relationship is considerably smaller also in the case of water capacity. Moreover,
the formulae for this relationship turn out to be simpler.

3.1. Differential Water Capacity for the van Genuchten Characteristic

If the moisture content 8 is described by van Genuchten formula, the water ca-
pacity coefficient assumes the shape:

mmC™ (R \™! B — 6
clhs) = ——;:k——_ (E;:) - " ’m] m+1" ©)
1+ (cR)”]

After inserting the 6(h;) relationship, one obtains the formula:

1

mmy+1 i B
c(0) = ’%‘C O — 6,) 0 mm (1 - M) " (10)

k

Analysis of the ¢(6) function enables us to find its maximum at a point with
coordinates:
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Table 1. Soil parameters
Type of O |6 | m |m | C/he | e | Source of
Soil characteristic| [%] |[%] hy, |[cm~1]|[cm]|measurement
[cm] data
Aw]i(t)t/illlgo Genvfélhten 4 PR a5 Lag 1609*94 = Zg;a'fd?l;y
A‘i(t)t/hllgo logistic | 40 0.5 1.00 | 114 ] 0.023 | 65 Zgrga?d?f;y
A?r?iggoo o 40| 0 |092/3.77| 0.081 | 65 Zg";%‘;y
A?r(;iil :;00 logistic | 40 | 0 | 0.3 |89.4 >3 | 65 Zarga%‘;y
Sarﬁfhgz;ng o 138705 (0.428/3.67| 0.057 117 gggg;
Saﬁg}’g‘r’;;g e 3873.7/0120{13.6| 0.038 | 11.7 g‘;gg;
ligill(t)]c(:)lay o |49 0 0110 20 | 0.051 161 (T;l;]%
Saggs'tglray Genvj:hten b 11(}({;’2 24 | 046 26 (Sltgglg;
Eﬂ:‘g:;e o | 4809|0114 21| 0.056 | 1438 ?ltggé‘;
NO“{?@;“"“ Gonn 1520|0060 23 | 022 |34 (Sltggg;
9, = (M_l)m or h, = hic (__ml_"__l)m_' (11)
mm; + m C \mm + 1
and
mmy C - D gumy 4+ 1
Goar T hkl G (mmy + m1;m+1 (1)

In the case of clayey soils one can attain a parameter m; of less than 1. This
corresponds to the occurrence of such small pores that only adhesive moisture can
develop in the soil. Thus the moisture content changes monotonically and after
reaching full saturation it remains constant. The capacity coefficient increases as it
approaches full saturation and reaches zero at this point. In this case the formula
(12) cannot be applied.
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3.2. Differential Water Capacity for Logistic Characteristic
For the moisture content described by logistic curve, parameter ¢ can be derived
similarly resulting in:
& 1
c@) = ";1— @ — 6,) 0 (1 - ﬁm). (13)
k
Assuming the value of parameter m = 1 one can obtain an even simpler
solution:
C
6(9)=H O —6)0 1 — ). (14)

As can be seen in Fig. 4 (for ABO/100 sand), the water capacity as a function
of soil moisture content is simply a section of a parabola. For fine soils the function
c(f) i1s not symmetrical but is bell-shaped with a top shifted to a higher moisture
content. The analysis of the c¢(f) function makes it possible to find its maximum
at a point with coordinates:

m \" hp In m

and

)m+1. o)

The factor with m in the Eq. (16) attains: for m = 0.01 (clays) the value of
0.0095, form = 0.1 0.072 and for m = 1 (sands) 0.25, which gives maxima for
saturation rates equal respectively to 0.95, 0.79 and 0.50.

C
Cmax = H (Gn_gr)(m + 1

4. Features of Soil Water Capacity

In Fig. 4 the relationship of capacity parameter ¢ versus moisture content 6 is
presented for various real soils. The more clayey the soil the higher the moisture
content for which the maximum value of the capacity ¢ occurs. For clean sands
the maximum occurs as early as close to the saturation of #= 50%. For clays
the maximum shifts to about ®= 100%, reaching the limit for soils with very fine
pores.

In spite of the fact that the capacity coefficient depends on the moisture con-
tent c(0), its hysteresis is quite considerable. From the similarity of wetting and
drying characteristics results the similarity of the relevant graphs of the coefficient.
Extreme moisture contents # and 6, are achieved for a suction head equal to plus
and minus infinite, so the capacity at these points must be equal to zero. The
inflexion point of the moisture characteristic usually occurs for a similar moisture
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Fig. 4. Water capacity versus soil moisture content

content for both branches, hence the capacity maxima should be close to each
~ other. On the other hand, the values of maxima can differ quite considerably; e.g.
for Rehovot sand they are 1.7 and 1.36, for the ABO/100 sand 0.2 and 0.34 [m~!].
So the capacity hysteresis, although being less for the moisture relationship than
for the pressure one, cannot be neglected.

The shape of the capacity function for scanning curves is different from the
shape for the main wetting and drying branches. In Fig. 4 graphs of the coefficient
are presented for two exemplary scanning curves marked in Fig. 2 (secondary
wetting and secondary drying curves for Rehovot sand). For the moisture content
in the reversing point #; (corresponding here for the both curves at circa 20%)
the value of capacity decreases to the vicinity of zero which corresponds to the
flat fragment for the both scanning curves. During further drying or wetting, the
water capacity increases approaching asymptotically the value of capacity for the
relevant main branch. An approximate value of capacity c,,; for the first order
wetting curve and cy; for the first order drying one can be calculated from the
interpolation formulae:

[60-6 [6,—0
e 4 5 2 4 8 .
cr @, 8) = cu® Jo—pr and 016, 6) = ca® Jo—p.  (17)
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The capacity for curves of a higher order can be determined similarly using
curves of a lower order.

5. Conclusions

Relating the capacity functional parameter ¢ to the moisture content # makes it
possible to simplify a little the description of the former. For sandy soils, being
a basic material that constitutes aquifers, a good approximation is obtained using
parabolic function (14). Clayey soils need more sophisticated description, other-

wise a worse approximation must suffice. It is possible to take into account the

moisture hysteresis if one knows the main branches of moisture characteristic of
the soil. Based on the description of them made by the van Genuchten formula (5)
or logistic curve (6), one can determine the parameters of main capacity curves.
The values of capacity for scanning curves can be estimated by interpolation for-
mulae (17). This also concerns higher order curves.
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