PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Loads exerted by floating ice on a cylindrical structure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with the problem of interaction between a coherent floating ice cover and a fixed, rigid, vertically-walled circular cylinder. The ice cover, of horizontal dimensions considerably larger than the size of the structure, is assumed to be driven against the structure by wind and water current drag stresses. The floating ice cover is modelled as a plate that is subject to the action of horizontal forces and transverse bending due to the reaction of underlying water. During an interaction event, of a quasi-static character, the ice is modelled as a creeping material the behaviour of which is described by a viscous flow law with two, bulk and shear, viscosities. The viscosities change dramatically in their magnitudes during a transition from converging to diverging deformation of the material to reflect the fact that floating ice offers much less resistance to tensile rather than compressive stresses. By numerical simulations carried out by a finite difference method, the influence of the ice rheological parameters on the distribution of contact stresses at the ice - structure interface is investigated. Two types of boundary conditions at the interface, free-slip and no-slip, are considered, and their effects on the loads sustained by the structure are compared. In addition, creep buckling of the ice sheet near the structure is analysed to determine the critical time at which ice starts to fail due to exceeding its flexural strength at given loading conditions.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Waryńskiego17, 71-310 Szczecin, Poland
Bibliografia
  • Gray J. M. N. T., Morland L. W. (1994), A Two-Dimensional Model for the Dynamics of Sea Ice, Phil. Trans. R. Soc. Lond., A 347, 219–290.
  • Hibler W. D. (1979), A Dynamic Thermodynamic Sea Ice Model, J. Phys. Oceanogr., 9, 815–845.
  • Hibler W. D., Ip C. F. (1995), The Effect of Sea Ice Rheology on Arctic Buoy Drift, ASME AMD, 207, 255–263.
  • Morland L. W., Staroszczyk R. (1998), A Material Coordinate Treatment of the Sea-Ice Dynamics Equations, Proc. R. Soc. Lond., A 454 (1979), 2819–2857.
  • Overland J. E., Pease C. H. (1988), Modeling Ice Dynamics of Coastal Seas, J. Geophys. Res., 93 (C12), 15619–15637.
  • Sanderson T. J. O. (1988), Ice Mechanics, Risks to Offshore Structures, Graham and Trotman, London.
  • Schulkes R. M. S. M., Morland L. W., Staroszczyk R. (1998), A Finite-Element Treatment of Sea Ice Dynamics for Different Ice Rheologies, Int. J. Numer. Anal. Meth. Geomech., 22 (3), 153–174.
  • Sjolind S. G. (1985), Viscoelastic Buckling Analysis of Floating Ice Sheets, Cold Reg. Sci. Technol., 11 (3), 241–246.
  • Smith R. B. (1983) A Note on the Constitutive Law for Sea Ice, J. Glaciol., 29 (101), 191–195.
  • Staroszczyk R. (2003), Finite Element Simulations of Floating Ice – Engineering Structure Interactions, Arch. Hydro-Eng. Environ. Mech., 50 (3), 251–268.
  • Staroszczyk R., Hedzielski B. (2004), Creep Buckling of a Wedge-Shaped Floating Ice Plate, Eng. Trans., 52 (1–2), 111–130.
  • Timoshenko S.,Woinowsky-Krieger S. (1959), Theory of Plates and Shells, McGraw-Hill, New York, 2nd edn.
  • Wang Y. S., Ralston T. D. (1983), Elastic-Plastic Stress and Strain Distributions in an Ice Sheet Moving against a Circular Structure, Proc. Seventh International Conf. on Port and Ocean Engineering under Arctic Conditions, Helsinki 1983, 940–951.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0020-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.