PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon dynamics in soil recorded by 14C: model calculations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Time records of 14CO2 from soil respiration collected in the years 1998 to 2003 on sites representing different ecosystems (mixed wood, agricultural field and grassland, southern Poland), were analysed by use of MLB model built for this purpose. The modelled turnover time (TT) is maximum 22 yr for the agriculturally cultivated soil and only 14 yr for soil under grassland and mixed forest. About 22% of an old component of 1500 yr was admixed to the agriculturally cultivated soil while it was only 12% under mixed forest. Estimated ratio of carbon content in slow and in fast decomposition boxes varies from 22 to 40 in southern Poland pointing to slow decomposing organic compounds as the major pool of carbon in soil. The lowest ratio was observed for soil of low proportion of organics content in mixed forest, and the highest for grassland of well developed soil profile. D14C time records for not cultivated soils (under grassland and mixed forest) showed higher values than local atmospheric CO2, moreover 14CO2 from the mixed forest soil respiration remarkable exceeded "clean air" reference level for Central Europe.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
45--50
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Environmental Physics, Faculty of Physics and Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Environmental Physics, Faculty of Physics and Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Environmental Physics, Faculty of Physics and Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Coplen T.B., 1996: New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica and Cosmochimica Acta 60: 3359-3360.
  • 2. Dörr H. and Münnich K.O., 1986: Annual variations of the 14C content of soil CO2. Radiocarbon 28, (2A): 338-345.
  • 3. Gaudinski J.B., Trumbore S.E., Davidson E.A. and Shuhui Zheng, 2000: Soil carbon cycling in temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 5: 3-69.
  • 4. Gorczyca Z., 2003: Investigations of isotope composition in soil carbon dioxide flux into atmosphere on the south Poland area. Ph D. thesis, AGH University of Science and Technology, Kraków, 2003 (in Polish).
  • 5. Gorczyca Z., Rożanski K., Kuc T., Michalec B., 2003: Seasonal variability of the soil CO2 flux and its isotopic composition in southern Poland. Nukleonika 48 (4): 187-196.
  • 6. Haas H., Fisher D.W., Thorstenson D.C. and Weeks E.P. 1983: 13CO2 and 14CO2 measurements on soil atmosphere sampled in the sub-surface unsaturated zone in the western Great Plains of the US. Radiocarbon 25 (2): 301-314.
  • 7. Harkness D.D., Harrison A.F. and Bacon P.J., 1986: The temporal distribution of ‘bomb’ 14C in a forest soil. Radiocarbon 28 (2A): 328-337.
  • 8. Harrison K.G., and Bonani G., 2000: A strategy for estimating the potential soil carbon storage due to CO2 fertilisation. In: Wigley T.M.L. and Schimel D.S., eds., The Carbon Cycle: 141-150.
  • 9. Hua Q., Barbetti M., Zoppi U., Chapman D.M. and Thomas B., 2003: Bomb radiocarbon in tree rings from northern New Wales, Australia: Implications for dendrochronology, atmospheric transport, and air-sea exchange of CO2. Radiocarbon 45 (3): 431- 447.
  • 10. Jeckinson D.S., 1990: The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London B 329: 361-368.
  • 11. Kaduk J. and Heimann M., 1994: The climate sensitivity of the Osnabrueck Biosphere Model on the ENSO timescale. Ecological Modelling 75/76: 239-256.
  • 12. Kuc T., 1991: Concentration and carbon isotopic composition of atmospheric CO2 in Southern Poland. Tellus 43B: 373-378.
  • 13. Kuc T., Różański K., Zimnoch M., Nêcki J.M. and Korus A., 2003: Anthropogenic emissions of CO2 and CH4 in urban environment traced by measurements of atmospheric concentration and carbon isotope composition; a case study from southern Poland. Applied Energy 75: 193-203.
  • 14. Levin I. and Kromer B., 1997: Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 34 (2): 205-218.
  • 15. O’Brien B.J., 1986: The use of natural and anthropogenic 14C to investigate the dynamics of soil organic carbon. Radiocarbon 28 (2A): 358-362.
  • 16. O’Brien B.J. and Stout J.D., 1978: Movement and turnover of soil organic matter as indicated by carbon isotope measurements, Soil and Biochemistry, 10: 309 – 317.
  • 17. Parton W.J., Scurlock M.O., Ojima D.S., Gilmanov T.G., Scholes R.J., Schimel D.S., Kirchner T., Menaut J-C., Seastedt T., Garcia Moya E., Kamnalrut A. and Kinyamaro J.I., 1993: Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7: 785-809.
  • 18. Richter D.D., Markewitz D., Wells C.G., Allen H.L., Dunscombe J., Harrison K.G., Heine P.R., Stuanes A., Urrego B. and Bonani G., 1995: Carbon cycling in an old-field loblolly pine forest: Implications for the “mising” carbon sink and for the fundamental concept of soil. In: MacFee W., eds., Proceedings of the Eighth North American Forest Soils Conference, University of Florida, Gainesville: 233-251.
  • 19. Sarmiento J.L., Le Quere L.C. and Pascala S.W., 1995: Limiting future atmospheric carbon dioxide. Global Biogeochemical Cycles 9: 121-137.
  • 20. Schimel D.S., Enting I.G., Heimann M., Wigley T.M.L., Raynaud D., Alves D. and Siegenthaler U., 1995: CO2 and the carbon cycle. In: Houghton J.T., Meira Filho L.G., Bruce Hoesung Lee J., Callander B.A., Haites E., Harris N. and Maskell K., eds., Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IS92 Emission Scenario. Cambridge University Press, Cambridge, UK: 35-72.
  • 21. Siegenthaler U. and Joose F., 1992: Use of a simple model for studing oceanic tracer distributions and global carbon cycle. Tellus 44B: 186-207.
  • 22. Stuiver M. and Polach H., 1977: Discussion: Reporting of 14C data. Radiocarbon 19 (2): 355-363.
  • 23. Thorstenson D.C., Weeks E.P., Haas H. and Fisher D.W. 1983: Distribution of gaseous 12CO2, 13CO2, and 14CO2 in the sub-soil unsaturated zone of the western US Great Plains. Radiocarbon 25 (2): 315-346.
  • 24. Wang Y., Amundson R. and Trumbore S., 1994: A model for soil 14CO2 and its implications for using 14C to date pedogenic carbonate. Geochimica et Cosmochimica Acta 58: 393-399.
  • 25. Wigley T.M.L., 1993: Balancing the global carbon budget. Implications for projections of future carbon dioxide concentration changes. Tellus 45B: 409-425.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0019-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.