PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Targets for majority of drugs: G protein-coupled receptors - their structure and interaction with bioligands

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
G protein-coupled receptors (GPCRs) are the most frequent targets for many drugs. They form the largest superfamily of integral membrane proteins, of which more than 1000 members have the following common features: (i) All GPCRs form 7 hydrophobic a-helices of length ~38A (25 amino acids, 7 turns) along a single chain. The consecutive helices alternatively cross the membrane, starting from the extracellular side, so that they form a heptahelical transmembrane domain interwoven with 6 loops, of which the even ones plus the N-terminus create the receptor's extracellular domain while the odd ones plus the C-terminus form its intracellular domain. (ii) All GPCRs are stimulated by diverse extracellular (primary) signals. (iii) Stimulated GPCRs convey the primary signals via their transmembrane and intracellular domains to the cytosolic peripheral heterotrimeric GTP-binding proteins (G proteins), mediating the signal's further transduction to various cellular second messenger systems. A current status of structural studies on GPCRs, consisting of low ~7.5A resolution experimental structures and supplementary molecular modeling, is outlined. Subsequently, some results of authors' own work on studying essential interactions of the V2 vasopressin renal receptor (V2R) with its agonist [Arg8]Vasopressin (AVP) and selected antagonists are presented, as well as their possible impact on the biological signal transduction is discussed. Finally, perspectives for future developments are sketched.
Rocznik
Strony
583--599
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk, Poland
  • Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk, Poland
  • Department of Biophysics, Jagiellonian University, A. Mickiewicza 3, 31-120 Cracow, Poland
Bibliografia
  • [1] Ji T. H., Grossman M., Ji I., G protein-coupled receptors: 1. Diversity of receptor- ligand interactions, J. Biol. Chem. 273: 17299-17302 (1998)
  • [2] Unger V. M., Schertler G. F. X., Low resolution structure of bovine rhodopsin determined by electron cryo-microscopv, Biophys. J., 68: 1776-1786 (1995)
  • [3] Schertler G. F. X., Hargrave P. A., Projection structure of frog rhodopsin in two ciystalforms, Proc. Natl. Acad. Sci. 92: 11578-11582 (1995)
  • [4] Baldwin J. M., The probable arrangements of the helices in G protein-coupled receptors, EMBO J. 12, 1693-1703 (1993)
  • [5] Baldwin J. M., Structure and function of receptors coupled to G proteins, Curr. Opinion. Cell Biol. 6: 180-190 (1994)
  • [6] Bicker J. A., Trumpp-Kallmeyer S., Humblet C., G-protein coupled receptors: models, mutagenesis, and drug design, J. Med. Chem. 41: 2911-2927 (1998)
  • [7] Iismaa T. P, Biden T. J., Shine J., G Protein-Coupled Receptors, Springer-Verlag, Heidelberg, Germany, 1995
  • [8] Watson S., Arkinstall S., The G-protein linked receptor, Facts Book, Academic Press Ltd., London 1994
  • [9] Gether U., Kobilka B., G protein-coupled receptors: II. Mechanism of agonist activation, J. Biol. Chem. 273: 17979-17982 (1998)
  • [10] Sprang S. R., G protein mechanisms: insights from structural analysis, Annu. Rev. Biochem. 66: 639-678 (1997)
  • [11] Lambright D. G., Noel J. P., Hamm H. E., Sigler P. B., Structural determinants for activation of the a-subunit of a heterotrimeric G protein, Nature 369: 621-628 (1994)
  • [12] Mixon M. B., Lee E., Coleman D. E., Berghuis A. M., Gilman A. G. Sprang S. R., Tertiaiy and quaternary structural changes in G{ai induced by GTP hydrolysis, Science 270: 954-960(1995)
  • [13] Noel J. P., Hamm H. E., Sigler P. B., The 2.2A ciystal structure of transducin-a complexed with GTPyS, Nature 366: 654-663 (1993)
  • [14] Coleman D. E., Berghuis A. M., Lee E., Linder M. E., Gilman A. G., Sprang, S. R., Structure of active conformations of G.al and the mechanism of GTP hydrolysis, Science 265: 1405-1412 (1994)
  • [15] Sondek J., Bohm A., Lambright D. G., Hamm H. E., Sigler P. B., Crystal structure of a Gprotein py dimer at 2.1 A resolution, Nature 379: 369-374(1996)
  • [16] Lambright D. G., Sondek J., Bohm A., Skiba N. P., Hamm H. E., Sigler P. B., The 2.0A ciystal structure of heterotrimeric G protein, Nature 379: 311-319 (1996)
  • [17] Wall M. A., Coleman D. E., Lee E., Iniguez-Lluhi J. A., Posner B. A., Gilman A. G., Sprang S. R., The structure of the G protein heterotrimer G.aipi 2, Cell 83: 1047-1058 (1996)
  • [18] Unger V. M., Hargrave P. A., 3aldwin J. M., Schertler G. F. X., Arrangement of rhodopsin transmembrane a-helices, Nature, 389: 203-206 (1997)
  • [19] Baldwin J. M., Schertler G. F. X., Unger V. M., An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors, J. Mol. Biol. 272: 144-164 (1997)
  • [20] Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckman E., Downing K. H., J. Mol. Biol.,213:899 (1990)
  • [21] Vriend G., GPCRDB ©1996 (http://swift.embl-heidelberg.de/7tm/)
  • [22] Trumpp-Kallmeyer S., Hoflack J., Bruinvels A., Hibert M., Modeling of G-protein- coupled receptors: application to dopamine, adrenaline, serotonin, Acetylcholine, and mammalian opsin receptors, J.Med.C’nerri. 35:3448-3462 (1992)
  • [23] Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R., Electron- crystallographic refinement of the structure of bacteriophodopsin, J. Mol. Biol. 259: 393-421 (1996)
  • [24] Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M., X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipidic cubic phases, Science 277: 1676-1681 (1997)
  • [25] Kimura Y., Vassylyev D. G., Miyazawa A., Kidera A., Matsushima M., Mitsuaka K., Murata K., Hirai T., FujioshiY., Surface of bacteriorhodopsin revealed by high- resolution electron crystallography, Nature 389: 206-211 (1997)
  • [26] Herzyk P., Hubbard R. E., Automated method for modeling seven-helix transmembrane receptors from experimental data, Biophys. J. 69: 2419-2442 (1995)
  • [27] Peitch M. C., Herzyk P., Wells T. N. C., Huboard R. E., Swiss-Model, an automated knowledge-based protein modeling server at Glaxo Wellcome in Geneva, (http:// expasy.hcuge.ch/swissmod/SWISS-MODEL.html)
  • [28] Pogozheva I. D., Lomize A. L., Mosberg,H. L, The transmembrane 7-a-bundlc of rhodopsin: distance geometry calculation wi>h hydrogen bonding constraints, Biophys. J. 70: 612-634 (1997)
  • [29] Gross, P., Richter D., Robertson G. L., Eds., Vasopressin, John Libbey Eurotext, 1993, Paris
  • [30] Postina R., Kojro E., Fahrenholz F., Separate agonist and peptide antagonist binding sites of the oxytocin receptor defined by their transfer into the V2 vasopressin receptor, J.Biol.Chem. 271: 31593-31601 (1996)
  • [31] Kojro E., Eich P., Gimpl G., Fahrenholz F., Direct identification of an extracellular agonist binding site in the renal V2 vasopressin receptor, Biochemistry 32: 13537- 13544 (1993).
  • [32] Liu J., Wess J., Different single receptor domains determine the distinct Gprotein coupling profiles of members of the vasopressin receptor family, J. Biol. Chem. 271: 8772-8778 (1996)
  • [33] SYBYL, v. 6.1, Tripos Inc., St. Louis, MO, U.S.A., 1994
  • [34] Manning M., Sawyer W. H., Design, synthesis and some uses of receptor-specific agonists and antagonists of vasopressin and oxytocin, J. Recept. Res. 13: 195-214 (1993)
  • [35] Ogawa H., Yamashita H., Kondo K., Yamamura Y., Miyamoto H., Kan K., Kitano K., Tanaka M. Nakaya K., Nakamura S., Mori T., Tominaga M., Yabuuchi Y., Orally active, nonpeptide vasopressin V2 receptor antagonists: a novel series of l-[4-(benzoylamino)benzoyl]-2,3,4,5-tetrahydro-lH-benzazepines and related compounds, J. Med. Chem. 39: 3547-3555 (1996)
  • [36] Czaplewski C., Kazmierkiewicz R., Ciarkowski J., Molecular modeling of the human vasopressin V2 receptor/agonist complex, J. Comp.-Aided Molec. Design, 12: 275- 287 (1998)
  • [37] Czaplewski C., Kazmierkiewicz R., Ciarkowski J., Vasopressin V2 receptor/bioligand interactions, Lett. Peptide Sci4: (1998)
  • [38] Czaplewski C., Kazmierkiewicz R., Ciarkowski J., Molecular modelling of the vasopressin V2 receptor/ antagonists interactions, Acta Biochim. Pol 45: 19-26 (1998)
  • [39] Czaplewski C., Pasenkiewicz-Gierula M., Ciarkowski J., Molecular dynamics of a vasopressin V2 receptor in a phospholipid bilayer membrane, J. Rec. Signal Transduction Res 19: in press (1999)
  • [40] Czaplewski C., Pasenkiewicz-Gierula M., Ciarkowski J., Gprotein-coupled receptor - bioligand interactions modeled in a phospholipid bilayer, Int. J. Quantum Chem.Biophys. Quart.
  • [41] Mouillac B., Chini B., Balestre M. N., Elands J., Trumpp-Kallmeyer S., HoflackJ., Hibert M„ Jard S., Barberis C., The binding site of neuropeptide vasopressin Via receptor, J.Biol.Chem. 270: 25771-25777 (1995)
  • [42] Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. E. J., Brice D. M., Rodgers J. R., Kennard O., Shimanoachi T., Tasumi M., Protein Data Bank: a computer based archival file for macromolecular structures, J.Mol.Biol. 112: 535-542 (1977)
  • [43] Holm L., Sander C., Mapping the protein universe, Science 273: 595-602 (1996); Hoim, L., Sander, C., New structure - novel fold? Structure 5: 165-171 (1997)
  • [44] Brenner S. E., Chothia C., Hubbard T. J. P., Population statictics of protein structures: lessons from structural classifications, Curr. Opinion Struct. Biol. 7: 369-376 (1997)
  • [45] Gouauc E., It s not just a phase: crystallization and X-ray structure determination of bacteriorhodopsin in lipidic cubic phases, Structure 6: 5-10 (1998)
  • [46] Service R. F., Brightness speeds search for structure great and small, Science 277: 1217-1219 (1997)
  • [47] Moffat A. S., Opening the door to more membrane protein structures, Science 277: 1607-1608 (1997)
  • [48] Luecke H., Richter H. T., Lanyi J. K., Proton transfer pathways in bacteriorhodopsin at2.3Aresolution, Science280: 1934-1937 (1998)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0019-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.