PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling drug-receptor interactions in an average binding site for NK2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A tentative procedure applied to the search for a new antagonist of neurokinin A (NKA) is presented. In parallel a tentative 3-D model of the NK2 receptor was created, using bacteriorhodopsin (BRD) as a template. The residue substitutions were performed in BRD to obtain the sequence for NK2R_H and the seven a-helical segments were optimized forcing the a-helical backbone to match the corresponding aligned parts of BRD, while the arrangements of the side chains were model built based on available site-directed mutagenesis studies. Constrained MM and molecular dynamics simulations were carried out H-bonding a low energy conformer of the known drugs to residues in the receptor site, allowing both the receptor site and drugs to relax. The Connolly surface for each ligand allowed to determine an "average" binding site in which all the low energy conformers of known and prospective drugs were docked and classified according to a statistical index. The whole procedure was repeated exploiting the lately published structure of an actual G protein coupled receptor as a better template, thus producing a cavity in the binding site to directly dock the drugs. Corollary validations of the force fields used are also mentioned. In addition intra- and intermolecular interactions suitable to produce more active drugs were evaluated.
Rocznik
Strony
563--581
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • CNR - ICQEM, Institute of Quantum Chemistry and Molecular Energetics, Via Risorgimento 35, I-56126 Pisa, Italy
autor
  • CNR - ICQEM, Institute of Quantum Chemistry and Molecular Energetics, Via Risorgimento 35, I-56126 Pisa, Italy
autor
  • Menarini Ricerche SpA, Via Sette Santi 3, 1-50131 Florence, Italy
Bibliografia
  • [1] Frar.ke R., Theoretical Drug Design Methods, Elsevier, Amsterdam, 1984
  • [2] (a) Scrocco E., Tomasi J., Electrostatic molecular potential as a tool for the interpretation of molecular properties, Top. Curr. Chem., 42: 95-170 (1973); (b) Scrocco E., Tomasi J., Electronic molecular structure, reactivity and intermolecular forces: a heuristic interpretation by means of electrostatic molecular potentials, Adv. Quantum Chem., 11: 115-193 (1978)
  • [3] Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of hacteriorhodopsin based on high resolution electron cryo- microscopy,]. Mol. Biol., 213: 899-929(1990)
  • [4] Bhogal N., Donnelly D., Findlay J. B. C., The ligand binding site of the neurokinin 2 receptor, J. Biol. Chem.,269:27269-27274(1994)
  • [5] Huang R. R. C., VicarioR P.,StraderC. D.,FongT. M. Identification of residues involved in ligand binding to the neurokinin-2 receptor, Biochemistry, 34: 10048- 10055 (1995)
  • [6] (a) Connolly M.L., MSPOT, QCPE #429, Dept, of Chemistry, University of Indiana, Bloomington, Indiana 47401, 1982; (b) Connolly M.L., Solvent accessible surfaces of proteins and nucleic acids. Science, 221: 709-713 (1983)
  • [7] (a) Meng E. C.. Shoichet B. K., Kuntz I. D. Automated docking with grid-based energy' evaluation. J. Comp. Chem., 13: 505-524 (1992). (b) Weiner S. J., Kollman P. A., Case D. A., Singh U. C., Ghio C„ Alagona G., Profeta S. Jr., Weiner P., A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins, J. Am. Chem. Soc., 106: 765-784 (1984); (c) Weiner S. J., Kollman P A., Nguyen D. T., Case D. A., An all atom force field for simulations of proteins and nucleic acids, J. Comp. Chem., 7: 230-252 (1986)
  • [8] Pogozheva I. D., Lomize A. L., Mosberg H. I., The transmembrane 7-a-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints, Biophys. J.,70: 1963-1985(1997)
  • [9] Alagona G., Ghio, C, Monti, S., Stability of a constrained peptide-based antagonist of neurokinin A, as described by ab initio, semi-empirical and empirical calculations, J. Mol. Struct. (Theochem), 426: 339-347 (1998)
  • [10] Alagona G., Ghio C., Monti S., Ab initio investigation of the methyl imidazole-indole complexes, as models of the histidine-tryptophan pair, J. Phys. Chem. A, 102: 6152- 6160 (1998)
  • [11] Alagona G., Ghio C., Giolitti, A., Monti S., Theoretical investigation of the histidine- tiyptophan preferential interactions, Theor. Chem. Acc., in press
  • [12] Alagona G., Ghio C., Monti S., Ab initio study of preferential interactions between aromatic side chains, Manuscript in preparation
  • [13] Alagona G., Ghio C., Monti S., The effect of small substituents in 5 or 6 position on the properties of indole. An ab initio 6-3IG* study, J. Mol. Struct. (Theochem), 433, 203- 216(1998)
  • [14] Lefkowitz R. J., Cotecchia S„ Samama R, Costa T., Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins, Trends Pharmacol. Sci., 14: 303-307 (1993)
  • [15] RosenkiJde M. M., Cahir M., Gether U., Hjorth S. A., Schwartz T. W., Mutations along transmembrane segment II of the NK-1 receptor affect substance P competition with non-peptide antagonists but not substance P binding, J. Biol. C'hem., 269: 28160-28164 (1994)
  • [16] Hubbell W. L., Altenbach C., Investigation of structure and dynamics in membrane proteins using site-directed spin labeling, Curr. Opin. Struct. Biol., 4: 566-573 (1994.
  • [17] Farahbakhsh Z. T„ Ridge K. D., Khorana H. G., Hubbell W. L., Mapping light- dependent structural changes in the cytoplasmic loop connecting helixes C and D in rhodopsin: a site-directed spin labeling study. Biochemistry, 34: 8812-8819 (1995)
  • [18] Schertler G. F. X., Villa C., Henderson R., Projection structure of rhodopsin. Nature, 362: 770-772 (1993)
  • [19] Schertler G. F. X., Hargrave P. A., Projection structure of frog rhodopsin in two ciystal forms, Proc. Natl. Acad. Sci. USA,92: 11578-11582 (1995)
  • [20] Schertler G. F. X., Unger V. M„ Hargrave P. A. Biophys. J., 68: A21 (1995)
  • [21] Schertler G. F. X., Hargrave P. A., Unger V. M., Invest. Ophthalmol. Visual Sci., 37: 5805 (1996)
  • [22] (a) Unger V. M., Hargrave P. A., Schertler G. F. X. Biophys. J., 68: A330 (1995); (b) Unger V. M., Hargrave P. A., Baldwin J. M., Schertler G. F. X., Arrangement of rhodopsin transmembrane a -helices. Nature, 389: 203-206 (1997)
  • [23] Unger V. M., Schertler G. F. X, Low resolution structure of bovine rhodopsin determined by electron ciyo-microscopy, Biophys. J., 68: 1776-1786 (1995)
  • [24] Davies A., Schertler G. F. X, Gowen B. F.., Saibil H. R., Projection structure of an invertebrate rhodopsin. J. Struct. Biol., 117: 36-44 (1996)
  • [25] Soppa J., Two hypotheses - one answer. Sequence comparison does not support an evolutionaiy link between halobacterial retinal proteins including bacteriorhodopsin and eukaiyotic G-protein-coupled receptors, FE3S Lett., 342: 7-11 (1994)
  • [26] Baldwin J. M., An alpha-carbon template for the transmembrane helixes in the rhodopsin family of G-protein-coupled receptors, J. Mol. Biol., 272: 144-164 (1997)
  • [27] Donnelly D., Findlay J. B. C., Blundell T. L., The evolution and structure of aminergic Gprotein-coupled receptor, Recept. Channels, 2: 61-78 (1994)
  • [28] Herzyk P., Hubbard R. E., Automated method for modeling seven-helix transmembrane receptors from experimental data, Biophys. J., 69: 2419-2442 (1996)
  • [29] Pardo L., Ballesteros J. A., Osman R., Weinstein H., On the use of transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding remdatoty protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 89: 4009-4012 (1992)
  • [30] Taylor E. W., Agarvval A.. Sequence homology behveen bacteria rhodopsin and G- protein coupled receptors: exon shuffling or evolution by duplication?, FEES Lett., 325:161-166(1993)
  • [31] Zhang D., Weinstein H., Polarity conserved positions in transmembrane domains of G-protein coupled receptors and bacteriorhodopsin, FEBS Lett., 337: 207-212 (1994)
  • [32] Ballesteros J. A., Weinstein H., Integrated methods for the construction of three- dimensional models and computational probibg of structure-function relations in Gprotein-coupled receptors, Methods in Neurosci., 25: 366-428 (1995)
  • [33] Baldwin J. M., The probable arrangement of the helices in G protein-coupled receptors, EMBO J., 12: 1693-1703 (1993)
  • [34] (a) Maggi C. A., Patacchini R., Rovero P., Giachetti A., Tachykinin receptors and tachykinin receptor antagonists, J. Auton. Pharmacol., 13: 23-93 (1993); (b) Maggi C. A., The mammalian tachykinin receptors, Gen. Phannac., 26: 911-944 (1995); (c) Longmore J., Swain C. J., Hill R. G., Neurokinin receptors, DN&P, 8: 5-23 (1995)
  • [35] (a) Advenier C., Emonds-Alt X., Vilain P., Goulaouic P., Proietto V., Van Broeck D., Naline E., Le Fur G., Breliere J. C., SR 48968, a potent and selective nonpeptide antagonist of the neurokinin A (NK2) receptor, Abstr. Br. Pharmacol. Soc., Dec. 1991, C82; (b) Lawrence K.. B., Venepalli B. R., Appell K. C., Goswami R„ Logan M. E., Tomczuk B. E., Yanni J. M., Synthesis and substance P antagonist activity of naphtimidazolium derivatives, J. Med. Chem., 35: 1273-1279 (1992)
  • [36] (a) Advenier C., Emonds-Alt X., VVilain P., Goulaouic P., Proietto V., Van Broeck D., Naline E., Neliat G., Le Fur G., Breliere J. C., SR 48968, a potent and selective nonpeptide antagonist of the neurokinin A (NK2) receptor, Br. J. Pharmacol., 105: 77P (1992); (b) Emonds-Alt X., Vilain P., Goulaouic, P., Proietto V., Van Broeck D., Advenier C., Naline E., Neliat G., Le Fur G., Breliere J. C., A potent and selective nonpeptide antagonist of the neurokinin A (NK-2) receptor, Life Sci., 50: PL 101- PL106 (1992)
  • [37] Emonds-Alt X., Proietto V., Van Broeck D., Vilain P., Advenier C., Neliat G., Le Fur G., Breliere J. C., Pharmacological profile and chemical synthesis of SR 48968, a non-peptide antagonist of the neurokinin A (NK2) receptor, Bioorg. Med. Chem. Lett., 3,925-930 (1993)
  • [38] (a) Cooper A. W. J., Adams H. S., Bell R., Gore P. M., McElroy A. B., Pritchard J. M., Smith P. W., Ward P., GR159897 and related analogues as highly potent, orally active non-peptide neurokinin NK2 antagonists, Bioorg. Med. Chem. Lett., 4: 1951- 1956 (1994); (b) Beresford I. J. M., Sheldrick R. L. G., Ball D. I., Turpin M. P., Walsh D. M., Hawcock A. B., Coleman R. A., Hagan R. M., Tyers M. B., GRI59897, a potent nonpeptide antagonist at tachykinin NK2 receptors, Eur. J. Pharmacol., 272: 241-248 (1995)
  • [39] (a) Pavone V., Lombardi A., Nastri F., Saviano M., Maglio O., D’Auria G., Quartara L., Maggi C. A., Pedone C., Design and structure of a novel neurokinin A receptor antagonist cyclo [-Met'-Asp2-Trps-Phe4-Dap5-Leu6-]cyclo[2f - -5(3], J. Chem. Soc. Perkin Trans. 2, 2: 987-993 (1995); (b) Quartara L., Rovero P., Maggi C. A., Peptide- based tachykinin NK-2 receptor antagonits, Med. Res. Rev., 15: 139-155 (1995)
  • [40] Harmat N. J. S., Giorgi R., Bonaccorsi F., Cerbai G., Colombani S. M., Renzetti A. R., Cirillo R., Subissi A., Alagona G., Ghio C., Arcamone F., Giachetti A., Paleari F., Salimbeni A., 4-diazinyl and pyridinyl imidazoles: potent angiotensin II antagonists. Study of their activity and computational characterisation, J. Med. Chem., 38: 2925- 2937(1995)
  • [41] Selway C. N., Terrett N. K., Parallel-compound synthesis: method-ology for accelerating drug discovery, Bioorg. Med. Chem.,4: 645-654 (1996)
  • [42] Howson W., Rational design of tachykinin receptor antagonists, DN&P, 8: 97-103 (1995)
  • [43] Trumpp-Kallmeyer S., Hoflack J., Bruinvels A., Hibert M., Modeling of G-protein coupled receptors: Application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors, J. Med. Chem., 35: 3448-3462 (1992)
  • [44] SYBYL, version 6.2. Tripos Associates, Inc., 1699 S. Hanley Rd., Suite 303, St. Louis, Missouri 63144-2913, 1995; Clark M., Cramer R. D. Ill, van Opdenbosch N., Validation of the general purpose Tripos 5.2 force field, J. Comp. Chem., 10: 982- 1012 (1989)
  • [45] Discover/Insight II, BIOSYM Technologies, Inc., San Diego, CA 92121-2777, 1991
  • [46] (a) Lifson S., Hagler A. T., Dauber R, Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C=O...H- hydrogen bonds, J. Am. Chem. Soc., 101: 5111-5121 (1979); (b) Hagler A. T., Lifson 5., Dauber R, Consistent force field studies of intermolecular forces in hydrogen- bonded crystals. 2. A benchmark for the objective comparison of alternative force fields, J. Am. Chem. Soc., 101: 5122-5130 (1979); (c) Hagler A. T., Dauber P., Lifson 5., Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C=O...H-0 hydrogen bond and the analysis of the energetics and packing of carboxylic acids, J. Am. Chem, Soc., 101: 5131-5141 (1979)
  • [47] (a) Hagler A. T., Stem P. S., Sharon R., Becker J. M., Naider R, Computer simulation of the conformational properties of oligopeptides. Comparison of theoretical methods and analysis of experimental results, J. Am. Chem. Soc., 101: 6842-6852 (1979); (b) Dauber-Osguthorpe R, Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T., Structure and energetics of ligand binding to proteins: escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins: Structure, Function and Genetics, 4: 31-47 (1988)
  • [48] (a) Gasteiger J., Marsili M., Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges, Tetrahedron, 36: 3219-3228 (1980); (b) Gasteiger J., Sailer H., Calculation of the charge distribution in conjugated systems by a quantification of the resonance concept, Angew. Chem. Int. Ed. Eng., 24: 687-689 (1985)
  • [49] MidasPIus, Computer Graphics Lab., School of Pharmacy, University of California, San Francisco, California 94143,1992; FerrinT. E., Huang C. C., Jarvis L. E.,Langridge R. The MIDAS display system. J. Mol. Graphics,6: 13-27,36-37 (1988)
  • [50] Frisch M. J., Trucks G. W„ Schlegel H. B., Gill P. M. W., Johnson B. G., Robb M. A., Cheeseman J. R., Keith T., Petersson G. A., Montgomery J. A., Raghavachari K., Al- Laham M. A., Zakrzewski V. G., Ortiz J. V., Foresman J. B., Cioslowski J., Stefanov B. B., Nanayakkara A., Challacombe M., Peng C. Y., Ayala P. Y., Chen W., Wong M. W., Andres J. L, Replogle E. S., Gomperts R., Martin R. L., Fox D. J., Binkley J. S., Defrees D. J., Baker J., Stewart J. P., Head-Gordon M., Gonzalez C., Pople J. A. Gaussian94, Revision D.4, Gaussian, Inc., Pittsburgh, Pennsylvania, 1995
  • [51] (a) Ditchfield R., Hehre W. J., Pople J. A., Self-consisten molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of oiganic molecules, J. Chem. Phys.,56:2257-2261 (1972); (b) Hariharan P. C., Pople J. A., The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chim. Acta ,28:213-222 (1973)
  • [52] Kyte J., Doolittle R. F., A simple method for displaying the hydrophobic character of a protein,}. Mol. Biol., 157: 105-132(1982)
  • [53] GetherU., Lowe J. A. Ill, Schwartz T. W., Tachykinin non-peptide antagonists: binding domain and molecular mode of action, Bioch. Soc. Trans., 23: 96-102 (1995)
  • [54] Smith R W., Cooper A. W. J., Bell R., Beresford I. J. M.,GoreP. M.,McElroyA. B., Pritchard J. M., Saez V., Taylor N. R., Sheldrick R. L. G., Ward R, New spiropiperidines as potent and selective non-peptide tachykinin NK2 receptor antagonists, J. Med. Chem. 1995, 38, 3772-3779
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0019-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.