PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular modelling in the rational design of some anti-tumor and antifungal agents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present our approaches and results concerning application of molecular modelling techniques in the design of new chemotherapeutic agents for the control of eukariotic systems, comprising compounds for the treatment of systemic fungal infections and tumor deseases. In the case of anti-tumor agents we focused our attention on molecular properties of natural and synthetic anthraquinones. In the area of antifungal compounds we adopted two approaches. In one of them we examine molecular nature of undesirable properties of polyene macrolide antifungal antibiotic - amphotericin B using molecular modelling techniques. Another approach was aimed at the development of selective inactivator of glucosamine synthase, a novel target for antifungal compounds. In this problem we have used computational chemistry methods to identify structural features responsible for the selective inactivation of the target enzyme.
Rocznik
Strony
511--550
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Technical University of Gdańsk, Narutowicza 11/12, 80-952 Gdańsk, Poland
autor
  • Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Technical University of Gdańsk, Narutowicza 11/12, 80-952 Gdańsk, Poland
Bibliografia
  • [1] Lown J. W., Chen H. H., Plambeck J. A., Diminished superoxide anion generation by reduced 5-iminodaunorubuein relative to daunoruhicin and the relation to sardio toxicity of the anthracycline anti-tumor agents, Biochem. Pharmacol. 28:2563- 2570(1979)
  • [2] Tempczyk A., Tarasiuk J., Ossowski T., Borowski E., An alternative concept for the molecular nature of the peroxidating ability of anthracycline anti-tumor antibiotics and anthracenediones, Anti-Cancer Drug Design. 2:371-385(1988)
  • [3] Tarasiuk J., Liwo A., Wojtkowiak S., Dzieduszycka M., Tempczyk A., Gamier- Suillerot A., Martelli S.. Borowski E., Molecular determinants of singlet oxygen binding by anthraquinones in relation to their redox cycling activity, Anti-Cancer Drug Design. 6:399-416(1991)
  • [4] Tarasiuk J., Gamier-Suillerot A., Borowski E„ Lack of competition between cytochrome C and anthraquinone type drugs for the reductive site ofNADH dehydrogenase, Biochem. Pharmacol. 38:2285-2289(1989)
  • [5] Tarasiuk J., Garnier-Suillerot A., Stefahska B., Borowski E., The essential role of anthraquinones as substrates for NADH dehydrogenase in their redox cycling activity, Anti-Cancer Drug Design. 7:329-340(1992)
  • [6] Mazerski J., Martelli S., Borowski E., Steric hindrance of anti-tumor anthracenediones: molecular dynamics simulation, Polish J.Chem. 71:338-345(1997)
  • [7] Frederick C.A., Williams J. D., Ughetto G., van der Marel G. A., van Boom J. EL, Rich A., Wang A. H. J., Structural comparison of anticancer drug-DNA complexes: adriamycin anddaunomycin. Biochemistry, 29:2538-2545( 1990)
  • [8] Cirilli M., Bachechi F„ Ughetto G., Colonna F. P., Capobianco M. L„ Interactions between morpholinvl anthracyclines and DNA. The crystal structure of a morpholinodoxorubicin bound to d(CGTACG), J.Mol.Biol., 230:878-883(1993)
  • [9] Mazerski J., Martelli S., Borowski E., Molecular dynamics simulations of anti-tumor agents Mitoxantrone and Ametantrone intercalated to DNA, Acta Biochim.Polon. 45:1-11(1998)
  • [10] Mechlinski W., SchafFner C. P., Ganis P., Avitabile G., The chemical structure and absolute configuration of AMB, Tetrahedron Lett. 3873-3876(1970)
  • [11] DeKruijff B., Demel R. A., Polyene antibiotic-sterol interactions in membranes of Acheleplasma laidlawii cells and lecithin liposomes. III.Molecular structure of the polyene antibiotic-cholesterol complexes, Biochim.Biophys.Acta 339:57-70(1974)
  • [12] Sovv.nski P., Pawlak J., Borowsk- E., Gariboldi P., 1H NMR model studies of AMB: Comparison of X-ray and NMR stereochemical data, Magn.Reson.Chem. 30:275- 279(1992)
  • [13] Rinnert H., Maigret B., Conformational analysis of AMB. I. Isolated molecule, Biochim.Biophys. Res. Comm. 101:853-860( 1981).
  • [14] Meddeb S., Bergers J., Caillet J., Langlet J., Comparative theoretical study of the conformations of AMB methyl ester and AMB polar heads in the presence of water, Biochim.Biophys.Acta 1112:266-272( 1992).
  • [15] Baginsl M.. Gariboldi P., Bruni P., Borowski E., Conformational analysis of Amphotericin 8, Biophys.Chem. 65:91-100(1997)
  • [16] Baginski M., Borowski E., Distribution of electrostatic potential around amphotericin B and its membrane targets, J.Mol.struct.-Theochern. 389,139-146( 1997)
  • [17] Mazerski J., Borowski E., Molecular dynamics of amphotericin B, I. Single molecule, Biophys.Chem. 54,49-60(1995)
  • [18] Bolard J., Legrand P., Heitz F., Cybulska B., One-side action of AMB on cholesterol- containing membranes is determined by its self-association in the medium, Biochemistry 30:5707-5715(1991)
  • [19] Barwicz J., Christian S., Gruda I., Effects of the aggregation state of AMB on its toxicity’ to mice, Antimicrob.Agents Chemother. 36:2310-2315(1992)
  • [20] Mazerski J., Grzybowska J., Borowski E., Influence of net charge on the aggregation and solubility behaviour of amphotericin B and its derivatives in aqueous media, Eur.J.Biophys. 18,159-164(1990)
  • [21] Ernst C., Grange J., Rinnert H., Dupont G., Lematre J., Structure of AMB aggregates as revealed by UVand CD spectroscopies, Biopolymers 20:1575-1588(1981)
  • [22] Hemenger R. P., Kaplan T., Gray L. J., Structure of AMB aggregates based on calculation of optical spectra, Biopolymers 22:911-918(1983)
  • [23] Barwicz J., Gruszecki W. I., Gruda J., Spontaneous organisation of AMB in aqueous medium, J.Colloid.Interface Sci. 158:71-78(1993)
  • [24] Mazerski J., Borowski E., Molecular dynamics of amphotericin B. II. Dimer in water, Biophys.Chem. 57:99-108(1995)
  • [25] Baginski M., Tempczyk A., Borowski E., Comparative conformational analysis of cholesterol and ergosterol by molecular mechanics, Eur.Biophys.J. 17:159-166(1989)
  • [26] Baran M., Mazerski J., BorowsH E., Comparative study on membrane sterols conformation, Molecular dynamics simulation - in preparation
  • [27] Baginski M., Bruni P., Borowski E„ Comparative analysis of the distribution of the molecular electrostatic potential for cholesterol and ergosterol, J.Mol.struct.- Theochem. 311:285-296(1994)
  • [28] Herve M., Debouzy J.C., Borowski E., Cybulska B., Gary-Bobo C. M., The role of the carboxyl and amino groups of polyene macrolides in their interactions with sterols and their selective toxicity: a 3IP-NMR study, Biochim.Biophys.Acta 980:261- 272(1989)
  • [29] Mazerski J., Bolard J., Borowski E., Effect of the modifications of ionizable groups of amphotericin B on its ability to form complexes with sterols in hydroalcoholic media, Biochim.Biophys.Acta 1235:170-176( 1995)
  • [30] Khutorsky V. E., Structures of amphotericin B-cholesterol complex, Biochim.Biophys. Acta 1108:123-127(1992)
  • [31] Baran M., Mazerski J., Borowski E., MD simulations of AMB-sterol complex in water, Abstracts of VIIh International Symposium on Molecular Aspects of Chemotherapy, Gdansk, July 1997, p.73
  • [32] Bagiriski M., Haluk R., McCammon J.A., Molecular properties ofAmphotericin B membrane channel: a molecular dynamics simulation, Molec.Pharmacol. 52:560- 570(1997)
  • [33] Grzybowska J., Sowinski P., Gumieniak J., Zieniawa T., Borowski E., N-methyl-N-D- fructopyranosyl amphotericin B methyl ester, new AMB derivative of low toxicity, J.Antibiot. 50:709-711(1997)
  • [34] Chmara H., Andruszkiewicz R., Borowski E., Inactivation of glucosamine-6-phosphate synthase from Salmonella typhimurium by fumaroyldiaminopropionic acid derivatives, a novel group of glutamine analogs, Biochim.Biophys.Acta 870:357- '366(1985)
  • [35] Tempczyk A., Tamowska M., Liwo A., Borowski E., A teoretical study of glucosamine synthase, Part II. Eur.Biophys.J. 21:137-144(1992)
  • [36] Tempczyk A., Tamowska M., Liwo A., Borowski E., A teoretical study of glucosamine synthase, Part I. A. Eur.Biophys.J. 17:201-210(1989)
  • [37] Chmara H., Smulkowski M., Borowski E., Growth inhibitory effects of amidotransferase inhibition in Candida albicans by epoxypeptides, Drug Exptl.Clin.Res. 6:7-14(1980)
  • [38] Kucharczyk N., Denisot M. A., LeGoffic F., Badet B., GlcN-6-P synthase from E.coli: determination of the mechanism of inactivation by FMDP derivatives, Biochemistry 29:3668-3672(1990)
  • [39] Tamowska M., Oldziej S., Liwo A., Grzonka Z., Borowski E„ Investigation of the inhibition pathway of glucosamine synthase by FMDP by semiempirical quantum mechanical and molecular mechanics methods, Eur.Biophys.J. 21:273-278(1992)
  • [40] Wojciechowski M., Liwo A., Borowski E., Theoretical study of the reaction of methyl mercaptate and methyl-trans-epoxysuccinamide as a model of the GlcN-6-P synthase inhibition by EADP, J.Comp. Aided Molec.Design - in press
  • [41] Wojciechowski M., Mazerski J., Borowski E., Constrained search of conformational hyperspace of inactivators of glicosamine-6-phosphate synthase, J. Enzyme Inhibition 10:17-26(1995)
  • [42] Chmara H., Zahner H., The inactivation of glucosamine-6-phosphate synthase from bacteria by anticapsin, the C-terminal epoxyaminoacid from the antibiotic tetaine, Biochim.Biophys.Acta 787:45-52(1984)
  • [43] Wojciechowski M., Modelling of GlcN-6-P synthase inhibition by glutamine analogs, Doctoral Thesis, Technical University of Gdansk, Gdansk 1998
  • [44] Kubinyi H., Similarity and dissimilarity: a Medicinal chemist’s view, Perspect.Drug Discovery Design 9/10/11:225-252 (1998)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0019-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.