Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In a freely cooling granular material fluctuations in density and temperature cause position dependent energy loss. Due to strong local dissipation, pressure and energy drop rapidly and material moves from "hot" to "cold" regions, leading to even stronger dissipation and thus causing the density instability. The assumption of "molecular chaos" is valid only in the homogeneous cooling regime. As soon as the density instability occurs, the impact parameter is no longer uniformly distributed. The pair-correlation and the structure functions show that the molecular chaos assumption-together with reasonable excluded volume modeling-is important for short distances and irrelevant on large length scales. In this study, the probability distribution of the collision frequency is examined for pipe flow and for freely cooling granular materials as well. Uncorrelated events lead to a Poisson distribution for the collision frequencies. In contrast, the fingerprint of the cooperative phenomena discussed is a power-law decay of the probability for many collisions per unit time.
Wydawca
Rocznik
Tom
Strony
417--442
Opis fizyczny
Bibliogr. 83 poz., rys.
Twórcy
autor
- Instotute for Computer Applications, Pfaffenwaldring 27, D-70569 Stuttgart, Germany
Bibliografia
- [1] Wolf D. E., Grassberger P., editors, Friction, Arching and Contact Dynamics, World Scientic, Singapore, 1997
- [2] Behringer R. P., Jenkins J. T., editors, Powders & Grains 97, Balkema, Rotterdam, 1997
- [3] Luding S., Surface waves and pattern formation in vibrated granular media, In Powders & Grains 97, Amsterdam. 1997, Balkema
- [4] Herrmann H. J., Hovi J. P.j Luding S., editors, Physics of dry granular media — NA TO ASI Series, Dordrecht, 1998, Kluwer Academic Publishers
- [5] Baxter G. W., Behringer R. P., Fagert T., Johnson G. A., Pattern formation inflowing sand, Phys. Rev. Lett.; 62(24): 2825,1989
- [6] Duran J., Mazozi T., Clement E., Rajchenbach J., Decompaction modes of a two- dimensional "sandpile " under vibration: model and experimtes, Phys. Rev. E, 50(4):3092-3099,1994
- [7] Duran J., Mazozi T., Luding S., Clement E., Rajchenbach J., Discontinuous decompaction of a falling sandpile, Phys. Rev. E, 53(2): 1923,1996
- [8] Luding S., Duran J., Mazozi T., Clement E., Rajchenbach J., Simulations of granular ow: Cracks in a falling sandpile, In D. E. Wolf, M. Schreckenberg, and A. Bachem, editors, Traffic and Granular Flow, Singapore, 1996, World Scientific
- [9] Luding S., Duran J., Clement E., Rajchenbach J., Simulations of dense granular ow: Dynamic arches and spin organization, J. Phys. I France, 6: 823-836,1996
- [10] Goldhirsch I., Zanetti G., Clustering instability in dissipative gases, Phys. Rev. Lett., 70(11): 1619-1622,1993
- [11] Melo F., Umbanhowar P. B., Swinney H. L., Transition to parametric wave patterns in a vertically oscillated granular layer, Phys. Rev. Lett., 72(1): 172-175,1994
- [12] Luding S., Clement E., Rajchenbach J., Duran J., Simulations ofpattern formation in vibrated granular media, Europhys. Lett., 36(4): 247-252,1996
- [13] Umbanhowar P. B., Melo F., Swinney H. L., Localized excitations in a vertically vibrated granular layer, Nature, 382:793-796,1996
- [14] Luding S., Die Physik trockener granularer Medien, Logos Verlag, Berlin, 1998. Habilitation thesis (in gerrnan) accepted 1997, ISBN 3-89722-064-4
- [15] Savage S. B., Gravity flow of cohesionless granular materials in chutes and channels, J. Fluid Mech., 92:53,1979
- [16] Jenkins J. T., Cowin S. C., Theories for flowing granular materials, In S. C. Cowin, editor, Mechanics Applied to the Transport of Bulk Materials, New York, 1979. Am. Soc. Mech. Eng.
- [17] HafTP. K., Grain flow as a uid-mechanical phenomenon, J. Fluid Mech., 134:401—430, 1983
- [18] Homsy G. M., Jackson R., Grace J. R., Report of a symposium on mechanics of fluidized-beds, J. Fluid Mech., 236:477,1992
- [19] Hwang H., Hutter K., A new kinetic model for rapid granular flow, Continuum Mech. Thermodyn., 7:357-384,1995
- [20] Goldshtein A., Shapiro M., Mechanics of collisional motion of granular materials, Part 1. General hydrodynamic equations. J. Fluid Mech., 282:75-114,1995
- [21] Luding S., Collisions & contacts between two particles, In H. J. Herrmann, J. P. Hovi, and S. Luding, editors, Physics of $ry granular media - NATO ASI Series, page 285, Dordrecht, 1998. Kluwer Academic Publishers
- [22] Javier Brey J., Ruiz-Montero M. J., Cubero D., Homogeneous cooling state of a low- density granular flow, Phys. Rev. E, 54:3664-3671,1996
- [23] Dufty J. W., Santos A., Practical kinetic model for hard sphere dynamics. Phys. Rev. Lett., 77(7): 1270-1273,1996
- [24] Allen M. P., Tildesley D. J., Computer Simulation of Liquids, Oxford University Press, 1994
- [25] Lubachewsky B. D., How tu simulate bollards and similar system, J. of Comp. Phys. 94(2): 255,1991
- [26] Cundall P. A., Strack O. D. L., A discrete numerical model for granular assemblies, Geotechnique, 29(1): 47-65,1979
- [27] Rapaport D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995
- [28] Johnson K. L., Contact Mechanics, Cambridge Univ. Press, Cambridge, 1989
- [29] Luding S., HerrmannH. J., Blumen A., Scaling behavior of 2-dimensional arrays of beads under external vibrations, Phys. Rev. E, 50:3100,1994
- [30] Walton O. R., Braun R. L., Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks, Journal of Rheology, 30(5): 949-980, 1986
- [31] Foerster S. F., Louge M. Y., Chang H., Allia K., Measurements of the collision properties of small spheres, Phys. Fluids, 6(3): 1108-1115,1994
- [32] Labous L., Rosato A. D., Dave R., Measurements of collision properties of spheres using high-speed video analysis, preprint, 1997
- [33] Luding S.. Granular materials under vibration: Simulations of rotating spheres, Phys. Rev. E, 52(4): 4442,1995
- [34] Luding S., Muller M., McNamara S., The validity of “molecular chaos " in granular flows, In Proceedings of the World Congress on Particle Technology, Brighton, 199S Institution of Chemical Engineers, to appear
- [35] Bemu B., Mazighi R., One-dimensional bounce of inelastically colliding marbles oi. a wall, J. Phys. A: Math. Gen., 23:5745,199C
- [36] McNamara S., Young W. R., Inelastic collapse and clumping in a one-dimensional granular medium, Phys. Fluids A, 4(3): 496,1992
- [37] McNamara S., Young W. R., Kinetics of a one-dimensional granular medium in the quasielastic limit, Phys. Fluids A, 5(1): 34,1993
- [38] Luding S., Clement E., Blumen A., Rajchenbach J., Duran J., Studies of columns of beads under external vibrations, Phys. Rev. E, 49(2): 1634,1994
- [39] Du Y., Li H., Kadanoff L. P., Breakdown of hydrodynamics in a one-dimensional system of inelastic particles, Phys. Rev. Lett., 74(8): 1268-1271,1995
- [40] Giese G., Zippelius A., Collision properties of one-dimensional granular particles with internal degrees of freedom, Phys. Rev. E, 54:4828,1996
- [41] Aspelmeier T., Giese G., Zippelius , Cooling dynamics of a dilute gas of inelastic reds, submitted, 1997
- [42] Deltour P., Barrat J. L., Quantitative study of a freely cooling granular medium, J. Phys. I France, 7:137-151,1997
- [43] Grossman E. L., Zhou T. Ben-Naim E., Towards granular hydrodynamics in two- dimensions, Phys. Rev. E, 55:4200,1997
- [44] Shattuck M. D., Bizon C., Umbanhowar P. B., Swift J. B., Swinney H. L., 2d vertically vibrated granular media: Experiment and simulation, In Powders & Grains 97, Rotterdam, 1997, Balkema
- [45] Luding S., Clement E., Blumen A., Rajchenbach J., Duran J., Anomalous energy dissipation in molecular dynamics simulations of grains: The “detachment effect”, Phys. Rev. E, 50:4113,1994
- [46] Luding S., Clement E., Blumen A., Rajchenbach J., Duran J., Interaction laws and the detachment effect in granular media, In Fractal Aspects of Materials, volume 367, page 495, Pittsburgh, Pennsylvania, 1995, Materials Research Society, Symposium Proceedings
- [47] Landau L. D., Lifshitz E. M., Elasticity Theory, Pergamon Press, Oxford, 1975
- [48] ICuwabara G., Kono K., Restitution coefficient in a collision between two spheres, Japanese Journal of Applied Physics, 26(8): 1230-1233,1987
- [49] Brilliantov N. V., Spahn F., Hertzsch J. M., Poschel T., Modelfor collisions in granular gases, Phys. Rev. E, 53(5): 5382,1996
- [50] Lee J., Herrmann H. J., Angle of repose and angle of marginal stability: Molecular dynamics of granular particles, J. Phys. A, 26:373,1993
- [51] Schafer J., Dipoel S., Wolf D. E., Force schemes in simulations of granular materials, J. Phys. I France, 6: 5-20,1996
- [52] Radjai F., Schafer J., Dippel S., Wolf D., Collective friction ofan array ofparticles A crucial test for numerical algorithms, J. Phys. I France, 7: 1053, 1997
- [53] Poschel T., Buchholtz V., Static friction phenomena in granular materials: Coulomb law vi. particle geometry, Phys. Rev. Lett., 71(24): 3963,1993
- [54] Walton O. R., Braun R. L., Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters, In DOE/NSF Workshop on Flow of Particulates and Fluids, pages 1-17,1993
- [55] Walton O. R., Effects of interparticle friction and particle shape on dynamic angles of repose via particle-dynamics simulation, In Workshop: Mechanics and Statistical Physics of Particulate Materials, 1994
- [56] Poschel T., Buchholtz V., Molecular dynamics of arbitrarily shaped granular particles, J. Phys. I France, 5(11): 1431-1455,1995
- [57] Buchholtz V., Poschel T., Numerical investigations of the evolution of sandpiles, Physica A, 202:390,1994
- [58] Buchholtz V., Poschel T., Tillemans H. J., Simulation of rotating drum experiments using non-circular particles, Physica A, 216: 199,1995
- [59] Kohring G. A., Melin S., Puhl H., Tillemans H. J., Vermohlen W., Computer simulations of critical, non-stationary granular flow through a hopper, Comput. Methods in Appl. Mechanics and Eng., 124:2273,1995
- [60] Matuttis H. G., Luding S., The effect ofparticle shape and friction on the stresses in heaps of granular media, In D. E. Wolf, P. Grassberger, editors, Friction, Arching and Contact Dynamics, Singapore, 1997, World Scientific
- [61] L. Brendel, S. Dippel. Lasting contacts in molecular dynamics simulations, In H. J. Herrmann, J. P. Hovi, S. Luding, editors, Physics of Dry Granular Media, page 313, Dordrecht, 1998, Kluwer Academic Publishers
- [62] Bird G. A., Molecular Dynamics, the Direct Simulation of Gas Flow, Oxford Science Publications, Oxford, 1994.
- [63] Tanaka T., Yonemura S., Kiriba Yashi K., Tsuji Y., Clusterformation and particle- induced instability in gas-solid ows predicted by the dsmc method, JSME Int. Journal B, 39(2): 239-245,1996
- [64] Muller M., Luding S., Herrmann H. J., Simulations of vibrated granular media in 2d and 3d, In D. E. Wolf, P. Grassberger, editors, Friction, Arching and Contact Dynamics, Singapore, 1997, World Scientic
- [65] Bideau D., Hansen A., editors. Some geometrical properties of two-dimensional hard disk packings, pages 1-34, Disorder, granular media. North-Holland, Amsterdam, 1993
- [66] Alexander F. J., Garcia A. L., Alder B. J., A consistent Boltmann algorithm, Phys. Rev. Lett., 74:5212-5215,1995
- [67] Goldhirsch I., Tan M. L., Zanetti G., A molecular dynamical study ofgranular fluids: The unforced granular gas in two dimensions, Journal of Scientic Computing, 8: 1-40, 1993
- [68] McNamara S., Young W. R., Dynamics of a freely evolving, two-dimensional granular medium, Phys. Rev. E, 53(5): 5089-5100,1996
- [69] Jenkins J. T., Richman M. W., Kinetic theory for plane flows of a dense gas of identical rough, inelastic, circular disks, Phys. of Fluids, 28: 3485-3494, 1985
- [70] Luding S., Huthmann M., McNamara S., Zippelius A., Homogeneous cooling of rough dissipative particles: Theory and simulations, submitted April, 1998
- [71] Grossman E. L., Roman B., Density variations in a one-dimensional granular system, Phys. Fluids, 8:3218,1996
- [72] Kudrolli A., Goliub J. P., Studies of cluster formation due to collisions in granular material, In Powders & Grains 97, page 535, Rotterdam, 1997. Batkema
- [73] Kudrolli A., Wolpert M., Goliub J. P., Cluster formation due to collisions in granular material, Phys. Rev. Lett., 78(7): 1383-1386,1997
- [74] Sibuya M., Kawai T., Shida K., Equipartition ofparticles forming clusters by inelastic collisions, Physica A, 167:676,1990
- [75] McNamara S., Young W. R., Inelastic collapse in two dimensions, Phys. Rev. E, 50(1): R28-R31,1994
- [76] Trizac E., Hansen J. V., Dynamic scaling behavior of ballistic coalescence, Phys. Rev. Lett., 74(21):4114-4117,1995
- [77] Spahn F., Schwarz U., Kurths J., Clustering of granular assemblies with temperature dependent restitution and under keplerian differential rotation, Phys. Rev. Lett., 78: 1596-1599,'997
- [78] Orza J. A. G., Brito R., van Noije T. P. C., Ernst M. H., Patterns and long range correlations in idealized granular ows, preprint, 1997
- [79] Trizac E., Hansen J. F\, Dynamics and growth of particles undergoing ballistic coalescence,!. Stat. Phys., 82:1345-1370,1996
- [80] McNamara S., 7vvo dimensional granular medium driven by a vibrating wall, preprint, 1996
- [81] Goldhirsch I., Tan M. L., The single-particle distribution function for rapid granular shearflows of smooth inelastic disks, Phys. Fluids, 8(7): 1752-1763,1996
- [82] Duran J., Mazozi T., Clement E., Rnjehenbach J., Size segregation in a two- dimensional sandpile: convection and arching effects, Phys. Rev. E, 50(6): 5138-5141, 1994
- [83] Luding S., Duran J., Clement E., Rajchenbach J., Computer simulations and experiments of dry granular media: Polydisperse disks in a vertical pipe, In Proc. of the 5th Chemical Engineering World Congress, San Diego, 1996, AIChE
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0019-0027