PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of the blade cascade flows using upwind methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical formulation of the equations of fluid motion in turbomachinery cascades has been presented. A review of the calculation methods for solving these equations is given. These methods are based on an explicit time marching scheme with finite volume discretisation and upwind-biased technique for the inviscid fluxes calculations. The high order accuracy in space is realized by the MUSCL approximation. The discretisation methods and numerical grids are described. The calculations of viscous and inviscid flow models are performed. The model and results of the water steam flow analysis with homogeneous condensation are presented. The calculations are performed for complex problems of real blade configurations of turbomachinery.
Rocznik
Strony
287--317
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Institite of Power Machinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
  • Institite of Power Machinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Baldwin B. S., Lomax, H. (1978), Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow, AIAA Paper, No. 78-257
  • [2] Benetschik H. (1991 ),Numerische Bercchnung tier Trans- and Uherschall-Strdnwng in Turhomaschinen mil Hilfe eines impliziten Relaxationsverfihrcn, Dissertation, RWTI (-Aachen
  • [3] Boles A., Fransson T.H., 1986. Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results. Communication du Laboratoire de Thermique Appliquee ct de Turbomaschines de I'Ecole Polytechnique Federale de Lousanne, Nr 13
  • [4] Chakravarthy S. R. (1988), High Resolution Upwind Formulations for the Navier- Stokes Equation, VKI LS 1988-05
  • [5] Chien K. Y. (1982). Prediction of Channel and Boundary-Layer Flows with Low- Reynolds-Number Turbulence Model, AIAA Journal, Vol. 20, No. 1, pp. 33-38
  • [6] Chmielniak T. J.. Wroblewski W„ (1 995), Application of High Accuracy Upwind Schemes to Numerical Solution of Transonic Flows in Turbomachinery Blade Passage, VDI-Berichte Nr 1185. pp. 63-77
  • [7] Chmielniak T. J.. (1994) Przeplywy transoniezne, Ossolincum, Warszawa
  • [8] Chmielniak T. J., Wroblewski W.. Dykas S. (1997), Condensing Hater Steam Flow in Expansion Channels. Modelling and Design in Fluid-Flow Machinery 1999, Ed. J. Badur. J. Mikielcwicz, Z. Bilicki, E. Oliwicki, Wydawnictwo IMP PAN, Gdansk
  • [9] Courant R., Isaacson E.. Rees M.. (1952) On the Solution of Non-linear Hyperbolic Differential Equation, Comm. Pure and Applied Math. pp. 243-255
  • [10] Pejc M. E., (1981) Gasdynamic of Two-Phase Flow. Moscow (in Russian).
  • [11] Godunow S. K.. (1976) Cisliennoje rieszienie mnogomiernych zadac gazowoj dinamiki, Nauka. Moskwa
  • [12] Godunov S. K., 1959,/! Difference Scheme for Numerical Computation of Discontinuous Solution of Hydrodynamic Equation, Math. Sbomik, 47, pp. 271-306 (in Russian)
  • [13] Harten A., Hymatin J. M., (1983), Self Adjusting Grid Methods for One -Dimensional Hyperbolic Conservation law. Journal ofComputational Physics. Vol. 50, 235-269
  • [14] Hand D., (1 993), Mathematisehe Stromungslehre, Vorlrsungsumdruck des Aerodynamisches Institut dcr RWTH Aachen
  • [15] Hirsch C., 1990, Numerical Computation of Internal and External Flows, John Wiley and Sons, Chichester
  • [16] Jameson A., Schmidt W., Turkel E., (1981) Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes, AIAA Paper 81-1259
  • [17] Mac Cormack R. W., (1969) The Effect of Viscosity in Hypervelocity Impact Cratering, A1A A-Paper 69-354
  • [18] Liicke J. R., Benetschik IE, Lohman A, Gallus H. E., (1995), Numerical Investigation of Three-Dimensional Separated Flows Inside an Annular Compressor Cascade, Cieplne Maszyny Przeplywovve, Zcszyt 108. Wyd. Politcchniki Lodzkiej. pp. 227-237
  • [19] Manna M., (1992), A Three Dimensional High Resolution Upwind Finite Volume Filler Solver. VKI I N 180
  • [20] Mcrz R.,Kriickels J., Mayer J. F., Stetter IF, 1995, Influence of Grid Refinement on the Solution of the Three-Dimensional Navier-Stokes Equations for Flow in a Transonic Turbine Stage with Tip Gap, VDI-Berichtc Nr 1185, pp. 211 -224
  • [21] Osher S., (1984), Riemann Solvers, the Entropy Condition and Difference Approximation, SIAM Journal Numerical Analysis, 21, pp. 217,235
  • [22] Osher S., Solomon F., (1982). Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws, Mathematics of Computation, Vol. 38, No. 158. pp. 339-374
  • [23] Pandolfi M., (1984), A Contribution to the Numerical Prediction of Unsteady Flows, Al A A Journal, Vol. 22, No. 5. pp. 602-610
  • [24] Pulliam T.H., (1986), Artificial Dissipation Models for the Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics, Al AA Journal, Vol. 24, No. 12,pp. 1931-1940
  • [25] Roe P.L., (1981), Approximate Riemann Solvers, Parameter Vectors and Difference Schemes, Journal of Computational Physics, 43. pp. 357-372
  • [26] Saurel R., Larinl M., Loraud J. C., (1994) Exact and Approximate Riemann Solver for Real Gases, Journal of Computational Physics, 112, pp. 126-137
  • [27] Schwane R., Hand D., (1989), An Implicit Flux- Vector Splitting Scheme for the Computation of Viscous Hypersonic Flow, Al AA-Paper No. 89-0274
  • [28] SchncrrG., Dohmiann U., Jantzen H. A., Huber R. R., (1989) Transsonisehe Stroemungen mil Relaxation und Energiczufuhr (lurch IVasserdampfkondensation, Strocmungsmcchanik und Stroemungsmaschincn, 40, pp. 39-79
  • [29] Scjna M., Lain J. (1994), Numerical Modelling of Wet Steam Flow with Homogenous Condensation on Unstructured Triangular Meshes, ZAMM 74, No. 5
  • [30] Steger J. L., Warming R. F., (1981), Flux-1 actor Splitting of the Inviscid Gas Dynamic Equations with Applications to Finite-Difference Methods, Journal of Computational Physics, Vol. 40, pp. 263-293
  • [31] Sorenson R. L., (1980), A Computer Program to Generate Two-Dimensional Grids About Airfoils and Other Shapes bv the Use of Poisson s Equation, NASA TM-81198
  • [32] Thompson J. F., Thames F. C„ Mastin C. M., (1974), Automatic Numerical Generation of Bodv-Eitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two Dimensional Bodies, Journal of Computational Physics, 15, 1974, pp. 299-319
  • [33] Turner M. G., Jcnnions I. K., (1992), An investigation of turbulence Modelling in Transonic Fans Including a Novel Implementation of an Implicit k-c Turbulence Model, ASMF-Paper 92-GT-308
  • [34] van Albada G. D., van Leer B., Roberts W. W„ (1982),A Comparative Study of Computational Methods in Cosmic Gas Dynamics, Astron. Astrophysics, 108, 76-84
  • [35] van Leer B., (1979), Towards the Ultimate Conservative Difference Scheme. I '.A Second order Sequel to Godunov's method. Journal of Computational Physics, 32. pp. 101-136
  • [36] van Leer B., Thomas .1. L.. Roe P. L. and Newsome R. W., (1987). A Comparison of Numerical Flux Formulas for the Euler and Navier-Stokes Fc/uations, AIAA Paper, No. 87-1104
  • [37] van Leer B., (1982). Flux-lector Splitting for the Euler Equations, Lecture Notes in Physics, Vol. 170, pp. 507-512
  • [38] Wroblewski W.,G6rski 1.(1992), Zastosowanie rt'rwnan Poisson 'a do generaeji siatek dwuwymiarowyeh. Opracowanie wewiujtrzne Instytutu Maszyn i Urziidzen Lncrgctycznych Pol. Sh\skiej nrB-34/2, l/92,Gliwice
  • [39] Wukalowicz M.P.. Rivkin C.L., (1969) Equations of State of the Superheated Water Vapour, Tcplocnergetika, No 3. pp. 60-66 (in Russian)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0019-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.