PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

KAPPA - Karlsruhe Parallel Program for Aerodynamics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research in fluid dynamics can be done on both an experimental and numerical basis, For the latter a computer code needs to be written in order to solve the governing fluid flow equations. The KAPPA code is a CFD simulation package serving as a platform to develop faster and more accurate numerical schemes, better physical models, or as an engineering tool for the simulations of flows in technical equipment. Another important subject is the training and education of students or engineers. Since CFD is highly calculation intensive, new computer architectures such as vector and parallel computers are necessary to treat more complex flow fields or to resolve these flows more accurately. Therefore KAPPA has been specially designed to be used on these architectures. The structure of the code is such that the solution of additional transport equations needed for the simulation of chemistry, turbulence modeling, multiphase flows etc. can be easily implemented. In order to treat complex geometries the code is block structured. The finite volume method is used to discretize the equations in space. The code is written in Fortran 90 using the highly desirable new feature of this language. For the application of the code on parallel computers a message passing tool has been used.
Rocznik
Strony
215--270
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
  • Institute of Fluid Flow Machinery, University of Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany
Bibliografia
  • [1] AGARD138, On Experimental Data Basi2§t>r Computer Program Assessment, AGARD-AR-138, Advisory Report 138, report of the 11)1* Working Group 04,1979
  • [2] Amone A., Integration of Navier-Stokes Equations Using Dual Time Stepping and Multigrid Method, AIAA-Joumal, 1995
  • [3] Havre A., Statistical equations of turbulent gases, SIAM Problems of Hydrodynamics and Continuum Mechanics, 1969
  • [4] Jameson A., Transonic Flow Calculation, Technical Report MAE 1651, Princeton University, May 1984
  • [5] Jameson A., Multigrid Algorithms for Compressible Flow Calculations, Technical Report 1743, MAE-Report, 1985
  • [6] Jameson A., Time Depentant Calculations using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings, AI AA-paper, 1991
  • [7] Ubaldi M., Zunino P., Campora U., Ghiglione A., Detailed Velocity and Turbulence Measurements of the Profile Boundary Layer in a Large Scale Turbunie Cascade, ASME-International Gas Turbine and Aeroengines Congress and Exhibition, 1996
  • [8] Coles D., Cantwell B., An experiment study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of Fluid Mechanics, 1983
  • [9] Hirsch Ch., Numerical computation of internal and external flows, Vol 1+11, John Wiley and Sons, 1990
  • [10] Sievcrding K., Cicatelli G., The effects of vortex shedding on the unsteady pressure distribution around the trailing edge of a turbine cascade, ASME-paper no. 96-GT-359,1996
  • [11] Suga K., Craft T. J., Launder B. F,., Extenting the Applicatility of Eddy Viscosity Models through the use of Deformation Invariants and Non-linear Elements, 5th IAI1R Conference on Refined-Flow Modelling and Turbulence Measurement, Paris! 10 September, 1993
  • [12] Boussinesq D., Theorie de L'ecoulement tourbillant, Mem. Pres. Acad. Sci. XXIII, 1877
  • [13] Magagnato F., Improvement of the efficiency and convergence of the Dornier flow solver IKARUS, Technical Report BF 2/90B, Dornier Luftfahrt GmbI 1,1990
  • [14| Magagnato F., Validation of the K-e model for 3d-flow fields, Technical Report BF 2/90B, Dornier Luflfahrt GmbI 1,1990
  • [15] Wiistenberg IT, Aerodynamic Computations on Basic Car Shapes, 3rd International Conference on Innovation and Reliability in Automotive Design and Testing, 1992
  • [16] Thompson J. F., Numerical Grid Generation, J. Thompson Ed., 1982
  • [17] Lumley J. L., Computational modelling of turbulent flows, Advanced applied Mechanics, pages 123-176, 1978
  • [18] Hinze J. O., Turbulence. Second Edition, McGraw-Hill Publishing Company, 1975
  • [19] Ousterhout John K., Tel und Tk: Entwicklung graphischer Benutzerschnittstelknfs das X Window System, Addison-Wesley Publishing Company, 1995
  • [20] Martinelli L., Calculations of viscous flow with a multigrid method, Princeton University, Ph. D. Thesis, Mae Dept., 1987
  • [21] Eiseman P, Geometric method in computational fluid dynamics, ICASE-Report HO-If 1980
  • [22] Radespiel R., A cell-vertex multigrid method for the Navicr-Stokes equations, Technical Report TM-101557, NASA, 1989
  • [23] Fedorenko R. P., The speed of conver gence of one iterativ e process, USSR Comp. Math, and Math. Physics, 1964
  • [24] Leicher S., 3-D Navier-Stokes solution around the JRC Split-Sphere, Technical Report BF8/88B, Domier Lullfahrt GmbH, 1988
  • [25] Jameson A., Tatsumi S., Martinelli L„ Flux-Limited Schemes for the Compressible Navier-Stokes Equations,AIAA-Journal, 1995
  • [26] Pulliam T. H., Euler and thin layer Navier-Stokes codes: ARC2D, ARC3D, Computational Fluid Dynamics user's Workshop. Tennessee, 1984
  • [27] Speziale C. G., Abid R., Anderson K. C., A critical evaluation of two-equation models for near wall turbulence, /CASE Report No. 90-46, 1990
  • [28] Stock 11. W., Haase W., The determination of turbulent length scales in algebraic turbulence models for attached and slightly separated flows using Navier-Stokes methods, AlAA-paper H9-I950. 19H7
  • [29] Haase W., Wagner B., Jameson A., Dev elopment of a Navier-Stokes Method based on a finite volume technique for the unsteady Euler equations, 5th GAMM-Conference on Numerical Methods in Fluid Dynamics. Rom, 1983
  • [30] Martinelli L., Jameson A., Validation ofa multigrid method for the Reynolds averaged equations, AIAA-paper SS-0411, 1988
  • [31] Rieger I E, Jameson A., Solution ofsteady three-dimensional compressible Euler and Navier-Stokes equations by an implicit \JJ-scheme, AIAA-paper H7-06I9, 1987
  • [32] Yoon S., Jameson A., An LUSSOR scheme for the Euler and Nav ier-Stokesequations, AIAA-paper H7-0600, 1987
  • [33] Launder B. E., Reynolds W. C., Rodi W., Mathiew J., Jeandcl D., Turbulence models and their applications, Editions Eyrolles, Direction dcs Etudes et Recherche D'Electricite, 1985
  • [34] Baldwin B. S., Lomax IL, Thin Layer approximation and algebraic model for separated turbulent flows, AIAA Paper 78-257, 1978
  • [35] Thompson J. F., Thames F. C., Mastin C. M., Automatic numerical generation of body- fitted curvilinear coordinate systems for fields containing any number of arbitrary two-dimensional bodies, Journal of Computational Physics, pages 299-319, 1974
  • [36] Yakhot V., Orszag S. A., Renormalization group analysis of turbulence. /. Basic theory, Journal of Scientific Computing, 1986
  • [37] Ferziger Joel H., Peric M., Computational methods for fluid dynamics. Springer Verlag, 1996
  • [38] Anderson D. A., Tannehill J. C., Pletcher R. H., Computational Fluid Mechanicsand Heat Transfer, MeCravv-I fill, 1984
  • [39] Gibson M. M., Rodi W., A Reynolds stress closure model of turbulence applied to the calculation of highly curved mixing layers, Journal of Fluid Mechanics, pages 161-182,1981
  • [40] Launder B. E., Reece G. J., Rodi W., Progress in the development of a Reynoldsstress turbulence closure, Journal of Fluid Mechanics, pages 537-586, 1975
  • [41] Launder B. E., Shanna B. I., Application of the energy’ dissipation model of turbulence to the calibration of flow near a spinning disc, Letter Heat Mass Transf pages 131-138,1976
  • [42] Cebeci T., Smith A. M. O., Analysis of turbulent boary layers. Academic Press., 197'
  • [43] Launder B. E., Spalding D. B., Mathematical models of turbulence, Academic Press London and New York, 1972
  • [44] Patel V. C., Rodi W., Spalding D. B., Turbulence models for near-wall and low Reynolds number flows: A Review, AIAA-Joumal, pages 1308-1319, 1985
  • [45] Jameson A., Turkel E., Implicit schemes and LU-decomposition, Mathematical Computations, 1981
  • [46] Jameson A., Schmidt W., Turkel E., Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, AIAA-paper 81- 1259,1981
  • [47] Swanson R. C., Turkel E., Artificial dissipation and central difference schemes fori Euler andNS-equations, AIAA-p£)|>er 87-1107, 1987
  • [48] Martinelli L., Yakhot V., RNG-Rased turbulence transport approximations with applications to transonic flows, A1AA Paper 89-1950, 1989
  • [49] Jameson A. Yoon S., LU-implicit schemes with multiple grids for the Euler equatio AIAA-papcr 86-0105, 1986
  • [50] Rodi W., A new algebraic relarion for calculating the Reynold stresses, ZAMM 56 T21 g-T221,1976
  • [51] Rodi W., Examples of turbulence models for incompressible flows, AIAA-Joumal, pages 872-879,1982
  • [52] Seibert W., A graphic interactive program-system to generate block structured volume grids for fluid flow analysis, Functional description, DOGRID Version 5, D Report, No. BF8/90B, 1982
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0019-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.