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Abstract: In this work we investigate the possible benefit of employing adaptive wavelet algorithms 
instead of the classical fixed pyramidal wavelet decomposition for the compression of digital mammograms. 
In particular, we target on adaptive wavelet packet and NSMRA decompositions. We observe that 
information cost function optimized wavelet packet subband structures do not offer compression 
performance gain in this case whereas NSMRA decompositions moderately improve the results of 
classical wavelet decompositions. Due to the lack of fast and reliable search algorithms fixed NSMRA 
decompositions need to be generated and employed for classes of similar images.
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1. Introduction
Wavelet-based image processing methods have gained much attention in the 

biomedical imaging community. Applications range from pure biomedical mage 
processing techniques such as noise reduction, image enhancement, and detection of 
microcalcifications in mammograms to computed tomography (CT) magnetic 
resonance imaging (MRI), and functional image analysis (positron emission 
tomography (PET) and functional MRI) [44, 1],

Image compression methods that use wavelet transforms [40] which are based 
on multiresolution analysis — (MRA) have been successful in providing high rates 
of compression while maintaining good riage quality, and have proven to be serious 
competitors to discrete cosine transform — (DCT) [47, 33] or fractal — [16, 17, 27] 
based compression schemes. A wide variety of wavelet-based image compression 
schemes have been reported in the literature [3, 20, 26], ranging from simple entropy 
coding to more complex techniques such as vector quantization [2, 12], adaptive 
transforms [14, 41], zero-tree encoding [37], and edge-based coding [18]. The
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latest compression algorithms are based on set partitioning in hierarchical trees [35] 
and some improvements in arithmetic coding [51]. In several papers (see e.g. [4, 32, 
15]) the suitability of different lossy compression schemes with respect to medical 
images have been investigated thoroughly. In accordance to the results for general 
image types it has been found that advanced wavelet based compression schemes 
offer the best rate-distortion performance of all coders considered. Also aspects of 
lossless wavelet-based compression of medical images [45], as well as techniques 
for wavelet-based compression of medical video data [21, 48], have been described 
in the literature.

Medical image compression is constrained by the fact that most radiologists are 
not willing to base a diagnosis on an image that has been compressed in a lossy way. 
This is partially due to legal reasons (depending on the corresponding country’s 
laws) and partially due to the fear of misdiagnosis because of lost data in the 
compression procedure [50], Therefore, only lossless and visually lossless 
techniques are accepted. On the other hand, many medical professionals are 
convinced that the future of health care will be shaped by technologies such as 
telemedicine. Applications of this type demand lower data rates as are achievable 
with most currently used schemes [11]. Consequently, highly effcient and widely 
accepted techniques for medical image compression are needed.

In this paper we investigate the possible benefit of employing adaptive wavelet 
algorithms instead of the classical fixed pyramidal wavelet decomposition. The idea 
of using adaptive algorithms can be used in two ways: on the one hand, the adaptive 
process can be performed for each new image thereby causing computational and 
coding overhead as compared to the non-adaptive case, on the other hand the same 
(adaptively generated) setting may be employed for classes of similar images (this 
has been done in the context of the FBI fingerprint compression standard [22]). In 
particular, we target here'onto the transform step of the wavelet compression 
scheme and investigate adaptively generated subband structures (“wavelet 
packets”) and time-variant filterbanks (“NSMRA decomposition”) with respect to 
their perfonnance in compressing mammograms.

2. Wavelet Packet Compression
2.1 Wavelet Packet Decomposition and Basis Choice

Wavelet packets [49] represent a generalization of the method of multiresolution 
decomposition and comprise the entire family of subband coded (tree) decompo
sitions. Whereas in the wavelet case the decomposition is applied recursively to the 
coarse scale approximations only (leading to the well known (pyramidal) wavelet 
decomposition tree), in the wavelet packet (WP) decomposition the recursive 
procedure is applied to all the coarse scale approximations and detail signals, which 
leads to a complete WP tree (i.e. binary tree and quadtree in the ID and 2D case, 
respectively see Figure 1) and more flexibility in frequency resolution.

There are several possibilities how to determine the frequency subbands suited 
well for an application (the meaning of suitable depends on the type of application,
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Figure I. ID wavelet packet and pyramidal wavelet decomposition tree

e.g. signal/image compression [49], feature extraction [36], classification algorithms 
[23, 24], telecommunication applications [25], numerical mathematics [31], and many 
more). The WP “best basis algorithm” [10] performs an adaptive optimization of the 
frequency resolution of a complete WP decomposition tree by selecting the most 
suitable frequency subbands for signal compression. This is done by optimizing 
additive information cost functions. The same algorithm employed with non-additive 
cost function is denoted “near-best basis algorithm” [39], if the subband structure is 
restricted to uniform time-frequency resolution the corresponding algorithm is 
denoted “best level selection” [49],

In the context of image compression a more advanced technique is to use 
a framework that includes both rate and distortion, where the best basis subtree 
which minimizes the global distortion for a given coding budget is searched [34], 
Other methods use fixed bases of subbands for similar signals (e.g. fingerprints [22]) 
or search for good representations with a genetic algorithm [6, 5], Recently, WP 
based compression methods have been developed [52, 30] which outperform the 
most advanced wavelet coders (e.g. SPIHT [35]) significantly for textured images 
in terms of rate-distortion performance.

However, the class of images for which excellent results have been achieved 
with wavelet packet methods is somewhat limited. Usually, special frequency 
characteristics are required to guarantee a better behaviour as compared to the 
wavelet case: this has been shown for fingerprints [22] (and was verified with our 
software as well [5] in that case) and for the testimage “Barbara” [29, 52, 30], 
Here, we will investigate whether mammograms exhibit similar features to make 
wavelet packet techniques profitable. Additionally, newly developed non-additive 
cost functions for the near best basis algorithm are evaluated within that application 
framework. Classical non-additive information cost functions (as given in [39]) 
include the (non-additive) Shannon entropy, the weak /''-norm, and the data 
compression area. Our search for new cost functions has two motivations:

1. good cost function values do not necessarily imply good rate/distortion per
formance so far;

2. the evaluation of most cost functions mentioned above causes high computa
tional demand due to the sorting algorithms involved.
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Let (jc , x , ..., xn) be a sequence of transform coefficients. We introduce the 
following non-additive cost function:

Concentration: The interval containing the transform coefficients ([min,s ,<,,(*,1} 
„(*,-)]) >s partitioned into q equal-sized intervals [a.,a.+i] with 

a0 = minls.<„(*,) and aq = max|s ,<n(x). We set //. = #(x. e[a

and kj = y 7 t/?, for j  -  1, . q, k0= 0. The Lorenz measure of concentration 

(LMC) (also denoted Gini-coefficient [19]) is defined as

JL a / /
LMC = y (kj ,+ * ,) ---- ■1.

LMC holds 0 < LMC <(n-\)hi and originates from measures of concentration for 
frequency distributions. The higher the value of concentration the better suited for 
compression is the sequence of coefficients.

2.2 Experiments
In our experiments we use a set of mammograms with 256 graylevels (8 bpp) 

and 256x256 pixels size, results are g;ven for one representative only (see Figure 2a) 
since the other results are comparable. We use the so-called “Dartmouth Wavelet 
Tool Box” codec developed by G, Davis which is available for free for research 
purposes at h t t p : //www. c s .darim outh.edu /~gdavis/w avele t/w avele t.h tml 
in order to allow a high degree of comparabif y of our results. The software is used 
with Daubechies’ compactly-supported wavelets [13] with 10 filter taps and 5 levels 
of decomposition with periodic border padding. We have used the corresponding 
family of filters successfully in previous work (41, 43], see Villasenor [46] for a 
discussion about proper filter choice for wavelet coding. The multilayer, embedded 
quantizer with arithmetic coder is employed. In order to adapt this software to the 
requirements of wavelet packet coeffcient coding, we use the frequency oriented 
scan-ordering proposed in [30].

The compression ratio is defined as:
number of bits in the original image 

number of bits in the compressed ,mage

Peak signal-to-noise ratio (PSNR) is used as an objective measure of image qu- 
ah.y and is defined as follows (measured in deciBel dB):

PSNR = 10 log. 225-

where 255 is the maximal gray-value of the original i nage and efm is the average 
sample mean-squared error:

™ i=i j=\

http://www.cs.darimouth.edu/~gdavis/wavelet/wavelet.h


where f ( i , j )  and f ( i , j )  represent the N * N  original and the reproduced images, 
respectively.

In Figure 2b we see a typical result for mammograms (and as well typical for
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Figure 2. Adaptive vs non-adaptive compression o f a mammogram: a) mammogram, 
b) compression performance
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several tested angiograms): The classical wavelet approach significantly 
outperforms both adaptive algorithms in terms of rate-distortion performance (up to 
20 dB more). Additionally, the classical best basis algorithm employing additive 
entropy as cost function is slightly better than the near best basis approach using 
concentration as cost function (although this cost function has proven to give good 
rate-distortion performance for fingerprints [5]). Figure 3 shows the corresponding 
subband structures as employed in the compression process (subbands at lower 
decomposition levels are displayed in darker gray). Obviously, the computational 
demand for the adaptively generated subband structures is higher as compared to 
the classical case (even if the structures are calculated once and subsequently used 
for similar images). Based on this and similar results for other mammograms we 
may summarize that for mammogram-type images the following may be stated:

— classical fixed wavelet decomposition is superior to cost-function opti
mized adaptive wavelet packet subband structures;

— sophisticated non additive cost-functions do not necessarily give better results 
than classical simple additive ones.

a)

Figure 3. Subband structures for a mammogram: a) classical wavelet, 
b) NBB (Concentration), c) BB (Entropy)



In the following, we evaluate the rate-distortion performance of subband 
structures generated by optimizing the non-additive cost function “quadratic 
compression area” as proposed in [38, 39]. Figure 4a compares the cost function 
values of the subband structures corresponding to the classical wavelet 
decomposition and this generated by the near best basis algorithm (two horizontal 
lines) to the evolution of the values of subband structures in time optimized with 
a genetic algorithm (see [5, 6] for more details). Note that the cost function value in
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the plot corresponds to M(\+cost) due to internal reasons within the genetic 
algorithm implementation. As a matter of fact, the near best basis subband structure 
is superior to the pyramidal wavelet decomposition in terms of compression area. 
Obviously, the value achieved with the near best basis algorithm is far from being 
optimal since the genetic algorithm reaches much better values. Interestingly, these 
results are of minor relevance for the rate-distortion performance. Figure 4b reveals 
that the subband structure corresponding to the near best basis algorithm shows 
clearly better rate-distortion performance as compared to that corresponding to the 
genetic algorithm (which has better cost function values). This property also holds if 
we compare Figures 4b and 2b since again the classical wavelet method is superior. 
This obviously shows that within the set of subband structures with acceptable 
values in terms of compression area (which is fairly large) the ranking with respect 
to compression area has little to do with the ranking with respect to rate-distortion 
performance.

A second comparison of Figures 4b and 2b shows that the cost function 
concentration performs almost equally as the cost function compression area with 
respect to rate-distortion performance — this is achieved at a significantly lower 
computational cost for concentration. Additionally it is interesting to see that the 
subband structures corresponding to the two cost functions are fairly different 
(Figure 3b (concentration) vs 5a (compression area)) but lead to almost identical 
rate-distortion curves.

Summarizing we may clearly state that subband structures generated by the best 
basis or near best basis algorithm lead to worse rate-distortion performance as 
compared to classical wavelet decomposition for mammogram-type images. 
Therefore, their use for this specific application can not be recommended.

a) b)
Figure 5. Subband structures corresponding to the cost function “compression area " using different 

optimization techniques: a) near best basis algorithm, b) genetic algorithm
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3. NSMRA Compression
3.1 NSMRA Decomposition and Algorithms

In the classical MRA scheme one uses a set of well chosen filter coefficients to 
perform a convolution followed by a dec' nation from fine to coarse scales. Since all 
the transformations at each level are perfonned independently, it is possible to use 
different filter coefficients at every scale/This theory of non-stationary MRA 
(NSMRA) was introduced in [9]-based on this there have been some papers 
published on exploiting the freedom ;n choosing different wavelet filters for diffe
rent scale levels for adaptive image coding techr'ques (e.g. using a filter library 
[42, 41, 43] and an adaptive filter design approach [14, 28]).

The classical 2-D wavelet decomposifi in is implemented by first convolving the 
rows of the low pass image 5 (or the original image in the first decomposition 
step) with the QMF filterpair G and H (which are a high pass and a low pass filter, 
respectively), retaining every other row, then convolving the columns of the resulting 
images w'th the same filterpair and retaining every other column. The same 
procedure ij applied again to the coarse scale approximation S. and to all subsequent 
approximations.

Since all the convolu ;ons at different Scale (or resolution) levels and image 
direc Ans are performed independently we can define a generalized decomposition 
as follows:

A NSMRA wavelet decomposition is obtained by using different filterpairs for 
different scale levels of the decomposition (e.g. Figure 6: filterpair G, H at scale 
level j  + 1, filterpair A, B at scale level j).

Rows Columns

Rows Columns

D.

D2

Si-1

Figure 6. 2-D NSMRA wavelet decomposition

Suppose we have given a filter library containing / pairs of different wavelet 
filters and a fixed maximal decomposition depth m. It is possible to build with the 
filters contained in this library l m different NSMRA wavelet decompos dons (always 
including classical ones). Now we describe an algorithm that identifies good filter 
combinations in this big set of possible ones in terms of a tree search problem.
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Beginning at the top of the tree, we expand for the first scale level into / 
branches (corresponding to the decompositions using the / different filterpairs) and 
get / children nodes. Each of these nodes is expanded again for the second scale 
level into / branches leading to l 2 nodes at the second scale level. When the whole 
tree is expanded we arrive at l m nodes at the bottom of the tree which correspond to 
l m possible NSMRA decompositions using a library and decomposition depth of the 
given order.

Finding the best NSMRA decomposition in this tree corresponds to finding the 
node at the bottom level that gives the lowest information cost. A NSMRA 
decomposith n is represented by a path from the root to a bottom node in the tree.

A local optimization algorithm (also denoted :‘best level filter select in algorithm” 
in [41]) can be described in terms of searching in this NSMRA decomposition tree 
as follows. After the decompositi on of the first scale level using all the / filterpairs 
only the node with the best cost functicn value (this may be an information cost 
function e.g. entropy (see last section) evaluated on the detail images only or any 
rate-distortion based cost function) is expanded into its / branches (corresponding to 
the second scale level). The resulting / nodes are again evaluated and only the best 
one is expanded. Following this procedure, only ml paths are investigated instead of 
l m in a complete search.

In terms of class,. al tree search this local optimization algorithm is a hill-climb 
or a beam search expanding only the best node. Parallel algorithms for this type of 
search procedure have been already proposed [42],
3.2 Experiments

Our experiments have been confined to pyramidal subband structures and we 
may therefore employ a codec optimized for that setting. We use the so-called 
“SP1F1T” codec [35] developed by A. Said and W. Pearlman which is available 
(source-code is no longer available) at h t t p : / / i p l . r p i  . e d u : 80 /S P IH T / 
in a reduced version. As before, decomposition depth is fixed to m = 5. The filter 
library consists of Daubechies’ compactly-supported wavelets [13] ranging from 2 
to 16 filter taps (consequently, /=  8) denoted d2-dl6. The cost function employed is 
PSNR measured for each decomposition stage at specific compression ratios (in this 
case 10, 20 and 80). In Figure 7 we display results for the following algorithms:

— MAX-Singlefilter: The highest PSNR value achieved by classical decom
position with a filter contained in the library;

— MIN-Singlefilter: The lowest PSNR value achieved by classical decompo
sition with a filter contained in the library;

— FULL_SEARCH: The highest PSNR value achieved by exhaustive search 
through l m = 32768 possible NSMRA decompositions;

— LOCAL_OPTIMIZATION: The PSNR value achieved by local optimiza
tion as described before.

http://ipl
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picture: mammaI .raw filter-file: daub_filter.dat 
dcconipositiondepth: 5 bitratc: 0.300000 bpp

— : MAX-Sngottor
139 260677

picture: mamrnol.raw filter-file: daub filter.dat 
decompositiondepth: 5 bitratc: 0.400000 bpp

I

, MAX-Singiefiitor 
35 069679

: MIN-Singiefiiler 
33 535480

OCAl OPTIMIZATION ru i.i SEARCH LOCAL OPTIMIZATION FULL SEARCH

a) b)

picture: mantmol.ntw filter-file: daub_filier.dat

LOCAL OPTIMIZATION FULL.SEARCH

MAX-Singiefttef 
29 239473

MIN-Smgiefi-tBf 
28 465285

c)

Figure 7. Results o f NSMRA compression at various compression ratios: a) 10, h) 20, c) 80

Whereas the results of exhaustive NSMRA search are always better as 
compared to the best classical wavelet decomposition (about 0.22-0.26 dB) this 
holds for local optimization only in the case of compression ratio 10. Table 1 shows 
the filter combinations found by the different algorithms (where e.g. d( 14,10,10,4,12) 
denotes a NSMRA decomposition with d 14 at the first scale level, dlO at the 
second, and so on).

In the case of compression ratios 10 and 20 the choice of the filters seems to 
exhibit a regular pattern: For the classical decomposition, longer filters give the best 
results whereas d2 performs worst (this is a well known fact). The best NSMRA 
decompositions employ longer filters at high scale levels and shorter ones at lower 
decomposition levels, for the worst NSMRA decompositions it is exactly vice versa. 
However, local optimization only follows this scheme at compression ratio 10 and 
this is the only case where the results are competitive (in the other cases, local 
search is “trapped” by fixing d2 at high scale levels). On the other hand no regular 
pattern with respect to filter choice seems to be present at compression ratio 80.
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Table 1. Decomposition schemes found with the different algorithms

C-ratio Max Min Local-NSMRA Max-NSMRA Min-NSMRA

10 d 12 d2 d( 14,10,10,4,12) d( 14,10,6,2,2) d(2,2,16,16,14)
20 d 14 d2 d(2,14,12,6,8) d( 14,12,6,6,10) d(2,2,16,16,10)
80 d4 d 16 d(2,2,4,4,10) d( 14,10,10,8,10) d(l 2,2,2,2,16)

Figure 8 displays reconstructed mammograms compressed at ratio 80 using the 
decomposition schemes “Max” and “Max-NSMRA” given in Table 1. It seems that 
in the NSMRA case less detail is lost and the artifacts are less pronounced.

a) b)
Figure 8. Comparison of NSMRA and wavelet compression at compression ratio 80:

a) NSMRA, h) wavelet

Summarizing, we have found that adaptive NSMRA decompositions may slightly 
improve the rate-distortion performance of classical wavelet codecs for 
mammogram-type images. However, the existing fast adaptation algorithms have 
proven to be not very reliable. Therefore, only the approach of training NSMRA 
decompositions with a class of representative images and subsequent fixing of the 
decomposition scheme seems promising.

4. Conclusion
In this work we have investigated the possible benefit of employing adaptive 

wavelet algorithms instead of the classical fixed pyramidal wavelet decomposition 
for the compression of digital mammograms. In particular, we target on adaptive 
wavelet packet and NSMRA decompositions. Although it is often claimed that 
information cost function optimized wavelet packets offer compression performance 
gain over classical wavelet decompositions we have found the contrary to be true in 
the case of mammogram-type images, whereas adaptive NSMRA decompositions
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moderately improve the results of classical wavelet decompositions. Due to the lack 
of fast and reliable search algorithms it is not possible to perform the NSMRA 
adaptation process for each new image individually. Fixed NSMRA decompositions 
need to be generated by adaptation onto a training set and employed for classes of 
similar images.
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