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Absteact: The paper deals with numerical investigations on the patterning of shear zones in granular
bodics. The behaviour of dry sand during plane strain compression tests was numerically modelled with
a finite element method using a hypoplastic constitutive relation within a polar (Cosserat) continuum.
The constitutive relation was obtained through an extension of a non-polar one by polar quantitics, viz.
rotations, curvatures, couple stresses using the mean grain diameter as a characteristic length. This relation
can reproduce the essential features of granular bodies during shear localisation. The material constants
can be casily determined from element test results and can be estimated from granulometric propertics.
The attention is laid on the influence of boundary conditions and the distribution of imperfections in
the granular specimen on the formation of patterns of shear zoncs.
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1. Introduction

Localisation of deformation in the form of narrow zones of intense shearing can
develop in granular bodies during processes of granular flow or shift of objects with
sharp edges against granular materials. Shear localisation can occur in a single zone,
in several zones or in a regular pattern. It can also appear along walls of stitt
structures at granular bodies. The determination of the thickness of shear zones is of
crucial importance for a realistic estimation of forces transferred from granular
bodies to structures, e.g. foundations, piles, earth retaining walls or silos (Tejchman
1989, Brinkgreve 1994, Tejchman 1997). Since the shearing resistance can increasc
with decreasing zone thickness (Tejchman 1998, 2000), resulting dimensionless
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forces are scale-dependent. The thickness of a wall shear zone has also an cffect
on the wall friction angle since both quantities are closely connected (Tejchman
1997). A better understanding of shear zones is also important since they usually
signify the failure of granular bodies.

In this paper, shear localisation in the form of a single or scveral zones was
investigated during plane strain compression tests. The FE—analysis was performed
with a finite clement method on the basis of a hypoplastic law with polar cxtensions
which takes into account the effect of density, pressure, deformation direction and
mean grain diameter. During FE-calculations, the emphasis was placed on the
influence of conditions along boundaries of the granular specimen and imperfections
inside of the specimen. The specimen size was always the same. In addition, the
cffect of the initial void ratio, pressure level, mean grain diameter and initial stress
statc on the thickness and the distance of shear zones was studied.

A single shear zone inside of granular bodies was experimentally studied with
a biaxial device (Vardoulakis 1980, Yoshida et al. 1994, Tatsuoka et al. 1994, Pradhan
1997), with a simple shear apparatus (Budhu 1984), with an improved direct shear
device (Wernick 1978), with a triaxial cell (Roscoe 1970, Lade 1982, Desrues and
Hammad 1989, Desrues et al. 1996, Yagi et al. 1997) and with a torsional shear
device (Schanz et al. 1997). Several shear zones were observed with a simple shear
apparatus (Scarpelli and Wood 1982), a biaxial apparatus (Han and Vardoulakis 1993),
with a triaxial ccll (Desrues et al. 1996), in model tests with footings (Tatsuoka of al.
1991), during shcar tests (Stazhevskii and Revushenko 1992, Tejchman 1997), in carth
pressure tests (Schwing 1991, Tejchman 1997), during trap-door experiments
(Vardoulakis ef al. 1981) and in tests in a hopper (Tejchman 1989). The behaviour of
granular bodics along a wall with different roughness was experimentally investaigated
with a Casagrande shear apparatus (Potyondy 1961, Sondermann 1983, Desai ¢r al.
1985), with an improved direct shear device (Wernick 1978, Tejchman 1997), with
a torsional ring shear apparatus (Neuffer and Leibnitz 1964, Yoshimi and Kishida 1981,
Loffelmann 1989), with a ring shear device (Brummund and Leonards 1973), with
a simple shear device by Roscoe (Uesugi et al. 1988), with a biaxial apparatus
(Tejchman 1989, Tejchman and Wu 1995), with a Couette apparatus (Loffclmann 1989),
with model silo tests (Tejchman 1989, Nedderman and Laohakul 1980) and with pull-
out tests (Wernick 1978).

Experimental results show that the thickness of a shear zone inside granular
bodies 1s not constant. It increases with increasing grain diameter (Tejchman 1989,
Vardoulakis 1980, Yoshida et al. 1994, Hassan 1995), wall stiffness (Loffelmann
1989), wall roughness (Tejchman 1989, Uesugi er al. 1988, Unterrcincer et al. 1994,
and shear velocity (Loffelmann 1989), and decreases with increasing initial density
(Tejchman 1989, Hassan 1995). The influence of grain propertics and of the
direction of the deformation has not been studied to such an extent (Yoshida et al.
1994). The effect of the pressure level on the thickness of a shear zone has not yet
been clarified. Biaxial tests (Desrues and Hammad 1989, Yoshida et al. 1994),
showed a decrease of the thickness with increasing pressure. However, wall friction
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tests (Loffelmann 1989, Hassan 1995) and silo model tests (Tejchman 1989,
Nedderman and Laohakul 1980) performed in the range of low pressures,
demonstrated an inverse trend. The observed thickness of shear zones inside of
granular bodies varies from 5 to 20 times the mean grain diameter d,, (Vardoulakis
1980, Yoshida et al. 1994, Desrues and Hammad 1989). It varies from 1 x d_|
a smooth wall up to 40 x d_ along a very rough wall (Tejchman 1989). The distance
between shear zones was found to be dependent on the void ratio of the granular
specimen, conditions along the boundarics, sample size and imperfections (Lade
1982, Gudchus 1986, Han and Vardoulakis 1991, Desrues e al. 1996, Tejchman
1997). The observed localisation patterns had often a character of self-organisation
(Gudehus 1986, Desrues et al. 1996, Tejchman 1997). Within shcar zoncs.
pronounced grain rotations (Oda et al. 1982, Ucsugi er al. 1988, Tejchman 1989.
Loffelmann 1989) and couple stresses (Oda 1993), large strain gradicnts (Yoshida
et al. 1994) and high void ratios (Desrues et al. 1996, Oda et al. 1997) arc
observed. Tests by Desrues et al. 1996 revealed that the void ratio in a shear zone
was cqual to its critical value. However, Oda ef al. (1997) and Oda and Kazama
(1999) found void ratios in the shear zone higher than critical.

The formation of shear zones inside granular bodies has been numerically
investigated within continuum mechanics using different approaches: softening
clasto-plastic (Shuttle and Smith 1988, Ncedleman and Tvergaard 1992,
dual-yicld hardening clasto-plastic (Ramakrshnan and Atluri 1994, Hicks
1998), hardening elasto-plastic with enriched shape functions (Lcroy and Ortiz
1989), hardening elasto-plastic with remeshing (Pastor and Peraire 1989, Hicks
1998), hardening elasto-plastic using an explizit technique (Cundall 1989, Hobbs and
Ord 1989, Poliakov et al. 1994), hardening and softening clasto-plastic with
bifurcation analysis (de Borst 1988), softening visco-plastic (Loret and Prevost 1991,
Sluys 1992, Belytschko et al. 1994), softening non-local clasto-plastic (Brinkgreve
1994), softening clasto-plastic with higher-order gradients (de Borst ef al. 1992,
Pamin 1994), softening polar elasto-plastic (Miihlhaus 1989, Tejchman 1989, de
Borst 1991, Tejchman and Wu 1993, Dietsche 1993, Tejchman 1997), and softening
polar hypoplastic (Tejchman and Bauer 1996, Tejchman 1997, Tejchman and Herle
1999, Tejchman et al. 1999, Tejchman 2000). FE-results within a conventional
continuum were determined by the resolution of the mesh and thus produced
unreliable results, ie. the shear zones became narrower upon mesh refinement and
computed force-displacement curves were considerably depending on the thickness
of the calculated shear zone (Tejchman 1989, 1994, 1997, Brinkgreve 1994). Thus,
a realistic modelling of the thickness of shear zoncs is only possible with constitutive
relations which include a characteristic length (Miihlhaus 1989, Tejchman 1989, de
Borst et al. 1992). FE—results converge to the finite size of the shear zone in a mesh
refincment (Miihlhaus 1989, Tejchman 1997) and initial and boundary value
problems become mathematically well-posed (Benallal ef al. 1987, Miihlhaus 1989,
de Borst er al. 1992). A polar approach seems to be more suitable for regularisation
in granular bodies than other models such as non-local, strain gradient and viscous

along
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(Stuys 1992). It takes into account rotations and couple stresses which are obscrved
during shearing but remain negligible during more uniform deformation (Tejchman
1989, Oda et al. 1982). Numerical results obtained with a polar hypoplastic law
(Tejchman 1998, Tejchman et al. 1999, Bauer and Huang 1999, Tejchiman 2000)
showed that the thickness of a shear zone appearing inside a granular body during
biaxial tests and shearing of an infinite planar layer increases with increasing initial
void ratio, pressure level and mcan grain diameter. The geometry of shear zones and
the distance between them was found to be dependent on the distribution of
imperfections (Hobbs and Ord 1989, Tejchman and Wu 1993), system size, confining
pressure, shear modulus and ratio of wave propagation to velocity of loading
(Poliakow et al. 1994, Tejchman and Wu 1997).

The paper is organised as follows. At the beginning, a polar hypoplastic
constitutive model is briefly outlined (Section 2) mentioning advantages and
limitations. Attention is also given to the calibration of the constitutive parameters.
Next, the finite clement implementation is briefly described (Scction 3). Results for
plane strain compression tests arc presented in Section 4. In Scction 5 some
conclusions arc outlined.

2. Material behaviour

2.1 Hypoplasticity

Hypoplastic constitutive models are an alternative to clasto-plastic formulations
for modelling granular materials (Kolymbas 1987, Gudchus 1994, 1996, 1997, 1998,
Baucr 1996, von Wollersdorff 1996, Wu et al. 1996, Wu and Niemunis 1996, Herle
1997, 1998). In contrast to elasto-plastic models, a decomposition of deformation into
clastic and plastic parts is not made. Yicld surfaces, plastic potentials, flow rules and
hardening and softening rules are not needed. Parameters of recent hypoplastic
modecls are closely related to granulometric properties and can thus be cstimated
from mean grain diameter, non-uniformity, grain shape and grain hardness (Herle
1997, 1998). They hold for a wide range of densities and pressures.

Hypoplastic models describe the mechanical rearrangement of so-called simple
grain skeletons assuming that the macroscopic state can be sufficiently characterised
by mecan values of stress and density. The following properties arc incorporated:

— the state is fully defined through the skeleton (or effective stress) and the
void ratio (inherent anisotropy is not considered, and vanishing stresses are
not allowed);

— deformation results only from grain rearrangements (small deformations
with ncarly clastic behaviour of grain contacts are not considered);

— granulometric propertics are permanent, i.e. abrasion and crushing of grains
are restricted;

— there are pressure-dependent minimum, maximum and critical void ratios;
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— the material exhibits an asymptotic bchaviour for monotonous and cyclic
stretching and SOM-states for proportional compression;

— the response is rate-independent;

— physico-chemical effects. in particular capillary and osmotic pressures, and
cementation of grain contacts are not taken into account.

The hypoplastic relations are of the rate type and consist of non-lincar tensorial
functions. Due to the incremental non-linearity with regard to the deformation rate,
.a hypoplastic model can describe non-lincar stress-strain and volumetric behaviour
up to and after the peak with a single tensorial equation. Also included is the
dependence on pressure level, density and direction of deformation rate, and
dilatancy or contractancy during shearing with constant pressure, respectively
increase and rclease of pressure during shearing with constant volume. Advantages
of the model are its simplicity and an easy procedure for determination of material
constants with standard laboratory experiments (Herle 1997, 1998, Hecrle and
Gudchus 1999). In case of quartz sand, the hypoplastic constitutive law is
approximately valid in a pressure range 1 kPa < -c, /3 <1000 kPa (Herle 1997).
Below it, additional capillary forces due to the air humidity and van der Waals forces
may become important, and above it, grain crushing. A hypoplastic constitutive law
cannot, however, describe realistically shcar localisation since it has not
a characteristic length. In order to take into account a characteristic length and to
describe the kinematics and thickness of shear zones in granulates polar terms were
introduced into a hypoplastic constitutive model by Gudchus (1996) and Baucr

(1996) by mcans of a polar (Cosserat) continuum (Miihlhaus 1989, Schifer 1962).

2.2. Polar continuum

A polar (Cosserat) continuum differs from a non-polar one by additional
rotations (Schifer 1962). For plane strain or axial-symmetry cach material point has
three degreces of frecdom: two translations u, and u,, and one rotation @ (Figure 1).
* is related with the micro-rotation and is not determined by the displacements as

X4

Figure 1. Degrees of freedom in a plane strain Cosserat continuum: u, — horizontal displacement,
u, — vertical displacement, w* — Cosserat rotation
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in a non-polar continuum:
w; =05, ; —u,,). (N

Deformation within a polar continuum is described by the following six quantities
(which are considered here as small increments):

& =y, €2y = Uy 5, (2)
£, =U, +0°, £y = Uy, — @, (3)
K, =0, K, =05, (4)

¢, are components of the deformation tensor and «, are components of the
curvature vector. The extensions are defined similarly as in a non-polar continuum.
The deformations ¢, and ¢, can be viewed as a relative deformation relating the
displacement gradient and the micro-rotation; in contrast to a non-polar continuum
€, 1s not generally equal to ¢, . The curvatures x, and k, describe the gradients of
the micro-rotation. ¢; and «, arc invariant with respect to rigid body motions
(Miihlhaus 1990). The six deformation quantities are energy-conjugate with the six
stress quantities. Four components of ¢, are associated with four components of the
stress tensor o, which is now in general non-symmetric. The curvatures &, are
associated with couple stresses m,. Figure 2 shows stresses o, and couple stresses
m_ at an element. Force and moment equilibrium require:

0'”.]+O'|2‘2—f|'[}:0, (5)
05,105, _sz =0, (6)
m,+m,,+0, —0c,-m’ =0, (7)

where f* and m® are the volume body forces and volume body moment,
respectively. Equations (5) — (7) are equivalent to the virtual work principle:
J‘,,(Gi/(sgij +mok,)dV =J‘B(ﬁ”5u/ +m®Sw )dV +L|Bt,.5u,.dA +J‘,-.,B"’5(')(”'A’ (8)
where L=o.n and m=mn.  and m are prescribed boundary tractions and
moment on the boundary 0,8 and 0,8 with the normal vector n,, d¢, and Ok,
denote  virtual deformations and  curvatures, respectively, Su, are  virtual
displacements, dw* is a virtual Cosscrat rotation, A stands for the surface, and
V' denotes the volume. Virtual displacements and Cosscrat rotations vanish on those
parts of the boundary where kinematic boundary conditions are prescribed. The
virtual work principle is used to formulate the FE—cquations of motion in a polar
continuum (Tejchman 1989, 1997, Sluys 1992, Miihlhaus 1989, Murakami and
Yoshida 1997, Groen 1997). As a consequence of micro-rotations and couple
stresses, the constitutive equation is endowed with a characteristic length
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corresponding to the mean grain diameter. Thus, numerical results become
independent of the spatial discretisation, and initial or boundary value problems
remain mathematically well-posed. The polar approach can model the thickness of
shear zones and scale effects (Miihlthaus 1989, Tejchman 1989, 1997).

An clasto-plastic constituive law within a polar continuum was first proposed by
Miihlhaus (1989, 1990), and was successfully applied in various boundary value
problems involving shear localisation (Tejchman 1989, 1997, Miihlhaus 1990,
Unterreiner et al. 1994, de Borst 1991, Tejchman and Wu 1993, 1995 Dictsche
1993, Tejchman and Gudchus 1993, Murakami and Yoshida 1997, Grocen 1997,
Papanastasiou and Vardoulakis 1992, Steinmann 1995, Yoshida et al. 1997).

2.3 Polar hypoplasticity

The polar extension of the hypoplastic law (Tejchman et al. 1999, Tejchiman and
Herle 1999) for the case of plane strain can be abbreviated as:

o, =F(e.dy.o,.m ,d; k). (9)

m, = f(e.dq,,0,.m,,d; k), (10)

o, and m arc the Cauchy stress tensor and Cauchy couple stress vector,
respectively, and e denotes the void ratio. The Jaumann stress rate tensor (°)'
Jaumann couple stress rate vector 1, the polar rate of deformation tensor df and
the rate of curvature vector k are dehncd by:

G, =0, —W,0, +0, W, (1

m; =n, —0.5w, m, +0.5m,w,, (12)
di=d,+w,—w, k=w, w,=0 wy=-u,=un" (13)
d; =05, +v;))  w;=05(v,, +v,,), (14)

a’l_/, 1s the classical (non-polar) rate of deformation, w, denotes the classical (non-
polar) spin tensor, w. =®" is the rate of the Cosserat rotation, and v represents the
spatial gradient of velocity. If the volume of grains remains constant, the rate of the
void ratio can be expressed by:

é=(1+e)d,,. (15)

The following representations of the constitutive equations are used:

6, = [.[L, (Gurrirdyohidg )+ fuN,; (G Wdidys + kikidi (16)

m,[dg, = f.LL (G, dG ko dy) + [N (i)W dady, + k ok d3, (17)
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wherein the normalised stress tensor and the normalised couple stress vector are
defined by:

G m,

2 18
O Oudsy (1)

The scalar factors f =f (e, 0,) and f,=f, (e, c,) take into account the
influence of the density and pressure level on the stress and the couple stress rates.
The stiffness factor f is proportional to the granulate hardness /#_and depends on
the mean stress and void ratio:

|-
h (l+e Ou
) o

1 l | €y €y 1

A=k —= . 20
clz 3 €. _e(m] (71\/5 ek

The granulate hardness 4_is related to the skeleton. The density factor f,, kind
of a pressurc-dependent relative density index, is represented by:

with

e_e (24
fi= ‘. Q1)

2 —E,

C

Here e 1s the current void ratio, e, 1s the critical void ratio, e, denotes the void
ratio at maximum densification due to cyclic shearing, e, 1s the maximum void ratio,
and a and n arc constants. The void ratio e is bounded thus by e, and e,. The
values of e, e, and e_ are assumed to decrease with the pressure ~o, according to
the equations (Bauer 1996)

€ =€y cxp[—(—cr“, /h, )”:" (22)
€; =€y CXp[—(—O’M /h\- )n}’ (23)
ec = e('() CXp l:_(_o-l«k /h.v )” :" (24)

whercin e, e, and e arc the values of e, e and e for o, =0, respectively.
i d0 0 i d C kk

For the tensor and vector functions L,.j, Ls, N‘,j and N the following representations
arc used:

20 A g ge s e _ 2 2 cn ge | oay <
Ly =ajd; +0,(5,d; +mkds), L =akds,+ajm(c,d, +nmkds). (25)

- - % 2 ~
N, =a/(c, +6,), N/ =aja.m, (26)
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where:

0 = e EE [reos(30)]. cos(30)=-—L (57

PP | ) Gfxlalmo-ml\ )“ (27)
[GAIGIA :l

. _\/3(3—sin¢(_) - _3(3+sing,)
1 TYg = .

sing, '8 sing, (28)

¢_is the critical angle of internal friction, 6 denotes the Lode angle, i.c. the angle on
the deviatoric plane o, + 0,+ 0,= 0 betwecen the stress vector and the axis o, (o, is
a principal stress componcnt) Thc coefficient a, ! lies cmpirically in the range 3 to
4.5. The dimensionless polar constant a controls the influence of the Cosscrat
quantitics on the material behaviour. It lies in the range of 1.0-5.0 and is correlated
with the grain roughness; the higher the constant a_, the smaller arc the polar
cffects. crll_' denotes the deviatoric part of o,. For an isotropic stress state with
6 =0. cos(30)=0and ¢ ' =¢ hold in Equation (27).

The polar extension of the hypoplastic law was achiecved analogously to
Miihlhaus’s formulation (1989). First, the term in the non-polar function L_with the
power of the stress ratio tensors and the non-polar modulus of the deformation rate
lld, Il were extended by the polar quantities m k. d, and k k. d;, respectively.
Therein. the polar deformation rates d¢ were used. The non-polar function N,
was left unchanged. The polar function L¢ was similarly defined as L. However.
the function N¢ had to be assumed in another way than N, since the evolution of
couple stresses during shearing is different from that of stresses due to their skew
symmetry and lack of sign restriction (Tejchman 1994). Assuming that the material
has an asymptotic bchaviour both for stresses and couple stresses during
monotonous shearing, the function N¢ was found by fitting the numerical results for
shearing of an infinite layer between two very rough walls (Tejchman 1994, 1997,
2000) with a theoretical solution within a polar elastic continuum (Schéfer 1962), and
with a numerical solution within a polar elasto-plastic continuum (Tejchman 1997).
The lincar term f L ¢ in Equation (17) causes an increase of couple stresses, and the

non-lincar term f, f,N\/d;,d;, + k k,d; in Equation (17) reduces them to reach
a stationary value during stationary shearing. Other linear and non-lincar
representations of N¢ were tested in FE—calculations. However, the most realistic
results were obtained with the given representation of N, In addition, the function
N in the polar hypoplastic law was verificd by results of other boundary valuce
problems involving shear localisation (Tejchman 1997). If the characteristic length
d,, becoms infinitcly small, the polar hypoplastic model (Equations (9) - (28))
reducces to the non-polar one.

The polar hypoplastic constitutive relation includes only 9 constants: ¢, ¢, ¢ .
¢.h,a, n,d,and a . The parameters h_and n can be determined from a single
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ocdometric compression test with an initially loose specimen; /1 reflects the slope of
the curve in a semilogarithmic representation, and # its curvature. The constant
a can be found from a triaxial test with a dense specimen. It reflects the height and
position of the peak value a the stress-strain curve. ¢ _is the angle of internal friction
in the critical (residual) state which can be estimated from the angle of reposc if
cohesive forces are negligible or measured in a triaxial test with a loose specimen. It
depends mainly on the grain size and angularity, being only little affected by
non-uniformity of the grain size distribution (Herle 1997). The values of e, ¢, . ¢

d0T T
and d;, can be obtained with simple index tests (e, = ¢ > = 1.5¢ )

max’ ()(lnz emin' (n max "
All parameters arc closely related to the grain size distribution and érain shape
as was shown by Herle and Gudchus (1999), and Herle (1997) for various
quartz sands. The following material constants for so-called Karlsruhe sand were
used: €y= 1.3, e,=051, ¢, =082, ¢C= 30°, hxz 190 MPa, a=0.3, n=0.5,
d.,= 0.5 mm. The polar constant was found to bc a = a;".

The capability of a polar hypoplastic approach in solving boundary value
problems involving localisation such as biaxial test, simple shearing, silo tlow, footing,
sand anchor was demonstrated by Tejchman et al. (1999), Tejchman and Bauer
(1996), Tejchman (1997), Tejchman and Herle (1998, 1999), Wehr ef al. (1998).
Wehr and Tejchman (1999). A close agreement between calculations and
experiments was achicved. The FE—calculations showed also that the thickness of
shear zones did not depend upon the mesh discretisation if the size of finite elements
in the shear zone was not more than five times the mcan grain diameter when using
triangular finitc elements with lincar shape functions for displacements and a
Cosscrat rotation (Tejchman and Bauer 1996, Tcjchman 1997). Numecrical
calculations by Sluys (1992) and Groen (1997) within a polar continuum also indicate
that convergence to a unique solution can only be obtained when the element size is
small enough compared to the width of the localised zonc.

3. Finite Element implementation

The FE—calculations of quasi-static plane strain compression tests were
performed for a sand specimen with a height of /=50 mm and a length of
/=100 mm. Quadrilatcral finite elements composed of four diagonally crossed
triangles were applied to avoid volumetric locking (Nagtegaal et al. 1974, Groen
1997). Totally, 3200 triangular elements were used. The height and the width of the
quadrilateral elements was 2.5 mm (5 x d_;). The intcgration was performed with
thrce sampling points placed in the middle of each clement side. Linecar shape
functions for displacements and the Cosserat rotation were used. The calculations
were carricd out with large deformations and curvatures (updated Lagrange
formulation), changing the clement configuration and the element volume (Bathe
1982). As the initial stress state in the granular specimen, a K —state without polar
quantitics (o,=7y,x,, 0©,=0,-K;7,%,, 0,=0,=m=m,=0) was assumed
(o, ~ horizontal normal stress, 0, — vertical normal stress, o, ~ horizontal shear
stress, o,, — vertical shear stress, m — horizontal couple stress, m,— vertical couple
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Figure 2. Stresses o, and couple stresses m_at an element of a plane strain Cosserat continuum

a) Xz b)

L«

¢ r
Ufl U ; Uy Us

Figure 3. Plane strain compression test: a) deformation produced by horizontal displacements of both
sides (1= u,"y and vertical pressure on the top p, b) deformation produced by horizontal displacement
of both sides (1] = u)), and vertical displacement of the top (u} = u!=u) l — left, r — right, 1 — top

stress (Figure 2), ¥, — initial density, x, — vertical coordinate measured from the top,
K,= 0.4 — pressure coefficient at rest). In addition, the calculations were carried out
with K =1.0.

Two different sets of boundary conditions were assumed. In the first casc, the
bottom was smooth, the smooth top was subject to the uniform vertical pressure p.
and the vertical smooth sides were subject to equal horizontal displacement
increments directed to the specimen inside (Figurc 3a). The boundary conditions
were along the bottom: «,=0, ¢,,= 0 and m, =0, along the top: ,,=—p, o,,=0 and
m =0, along the left side: u,=nAu, o, =0 and m,=0, and along the right side:
u,=-nAu, o, =0 and m,=0. In the second case, the bottom was smooth. the
smooth top was subject to uniform vertical displaccment increments directed to the
specimen outside, and the vertical smooth sides were subject to equal horizontal
displacement increments directed to the specimen inside (Figure 3b). The vertical
displacement was equal to the horizontal one. The boundary conditions werc along
the bottom: u,=0, ¢,,=0 and m, =0, along the top: u,=nAu, 6,,=0 and m =0,
along the left side: u = nAu, ¢, =0 and m,= 0, and along the right side: «,= -nAu,
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0, =0 and m,=0. n denotes the number ‘of thc time steps, Au is the constant
displacement increment in one step. The displacement increments were chosen as
Au/h=0.0001. About 2000 steps were performed.

To produce shear localisation, two different kinds of imperfections were applied.
First, a weak element with a large initial void ratio, e,= 0.90, was inserted in the
middle of the left side of the specimen. Second, the initial void ratio was distributed
stochastically in the specimen elements by mcans of a random generator in such
a way that the initial void ratio e, was increased in every clement by the value a - r,
where a=0.05 and r is a random number within the range of (0.01, 0.99). In
addition, the weak element was inserted in the middle of the specimen.

For the solution of the non-lincar equation system, a modified Newton-Raphson
scheme with line search (Bathe 1982) was used with a global stiffness matrix
calculated with only two first terms of the constitutive equations which arc lincar in

) i
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0 T 1 T T» !T 1 Y T i l l T 1 [ ¥ T T L ‘ T T T T j 0
i ]

10 © 4 -10
= -20 [ ©-20
é_, - 3
© 3f 3 30

-40 1 -40

_50 : U S U N | | | | 1 I| 1yt l T R T G N _50

0 1 2 3 4 5
u, [mmj

Figure 4. Deformed mesh at residual state and the evolution of the horizontal force P, versus the
horizontal displacement u, for dense sand (e,= 0.60, p= 100 kPa, d = 0.5 mn)
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d; and kd,. The stiffness matrix was updated every 100-200 steps. To accelerate
the calculations in the softening regime, the initial increments of displacements and
the Cosserat rotation in each calculation step were assumed to be equal to the entire
increments in the previous step (Vermeer and van Langen 1989, Tejchman 1989).
The iteration steps were performed using translational and rotational convergence
criteria. For the time integration of stresses and couple stresses in finite clements.,
a one-step Euler forward scheme was applicd.

4. Numerical results

The FE-calculations of a planc strain compression test with the boundary
conditions of Figure 3a, the K -initial strcss state (K = 0.4) and one weak clement in
the middle of the left side arec shown in Figures 4-9. Figures 4 and 5 show the
cvolution of the resultant horizontal force acting on the sides with the horizontal

Figure 5. Distribution of the Cosserat rotation und void ratio for dense specimen
(e,= 0.60, p= 100 kPa, d ;= 0.5 mm) at residual state (u,/h = 0.1)
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Figure 6. Deformed mesh and the distribution of the Cosserat rotation and void ratio for medium
dense specimen (e, = 0.75, p= 100 kPa, d ,= 0.5 mm) at residual state (u,/h = 0. 1)
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Figure 7. Deformed mesh and the distribution of the Cosserat rotation and void ratio for densc
specimen (e, = 0.60, p=100kPa. d = 1.0 mm) at residual state (u, th=10.1)
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Figure 8. Deformed mesh and the distribution of the Cosserat rotation and void ratio for dense

0.1)

0.60, p= 1000 kPa, a’_w = 0.5 mm) at residual state (u, /h

specimen ((’”
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a)

Figure 9. Distribution of the Cosserat rotation at residual state (u,/h = 0.1): a) loose sand (e, = (.83,
p=100kPa.d =05 mm, b)dense sand (e,=0.60, p=0-1000 kPa. d = 0.5 mm)

K

Figure 10. Deformed mesh for dense sand (e,= 0.60, p = 100 kPa, d , = 0.5 mm) at residual state
(u,7h = 0.1y with one imperfection element in the middie of the specimen
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Figure 11. Dcformed mesh for dense sand (e,= 0.60, p = 100 kPa, d, = 0.5 mm) at residual stare
(u,/h=0.1) with K = 1.0

Figure 12. Deformed mesh and the distribution of the Cosserat rotation for dense specimen
(e,= 0.60+0.05r, p=10kPa, d, =0.5 mm) at residual state
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i

Figure 13. Deformed mesh and the distribution of the Cosserat rotation for dense specimen
(e,=0.60+0.051, p=100kPa, d,w = (.5 mm) at residual state

displacement, the deformed FE—mesh, the distribution of the Cossecrat rotation and
void ratio at residual state for densc sand (e,=0.60, d50:0.5 mm, p= 100 kPa).
The magnitude of the Cosserat rotation is marked by circles with a maximum
diameter corresponding to the maximum rotation in the given step. In turn, the grade
of an increase of the void ratio is marked by a dark region. Darker region indicatcs
higher void ratio. The void ratios were taken as the mean values in cach
quadrilateral clement.

All state variables (forces, stresses, couple stresses, void ratios) tend to
asymptotic values. Due to the formation of shear zoncs, the calculated horizontal
force indicates large softening. The vertical force on the top is constant, and equal to
10 kN. During deformation, two shear zones are first created expanding outward
from the weakest element. Afterwards, the shear zone propagating towards the
inmovable bottom, reflects from it and moves next to the right side and reflect again
towards the top. Thus, four shear zones are visible. The shear zones arc marked out



504 J. Tejchman

Figure 14. Deformed mesh and the distribution of the Cosserat rotation for dense specimen
(e,= 0.60+0.05r, p=1000kPa, d,= 0.5 mm) at residual state

by the concentration of displacements and Cosserat rotations and by an increase of
the void ratio. The thickness of the shear zones on the basis of displacements and
Cosserat rotations is about =13 x d50, and the distance between two inclined shear
zones s =90 x d ;. The thickness of the shear zones on the basis of an increase of
the void ratio is larger since dense granular material dilates before the shear zone is
crcated (Herle 1997). The Cosserat rotations are only noticeable in the shear zone.
They appear only when a shear zone occurs. Outside the shcar zone, they are
negligible. The void ratio changes across the shear zone from 0.65-0.79. Outside the
shear zone, the void ratio is e = 0.55, and is lower than its initial value of 0.60 since
the granular material undergoes contractancy at the beginning of shcaring.
The largest void ratio in the shear zone corresponds approximately to the critical
value e, (Equation (24)).

The effect of the initial void ratio e, vertical pressure p and the mean grain
diameter d, is presented in Figures 6-8. The following results of t and s were
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Figure 15. Deformed mesh and the distribution of the Cosserat rotation for dense specimen
(e,=0.60+0.05r, p=0-100kPa, d,,=0.5 mm) at residual state

obtained: t=25xd, and s=85xd, (¢,=0.75, d, ;=05 mm, p=100kPa),
t=9xd and s=45xd  (e,=0.60, d,;=1.0 mm, p=100 kPa), and 1= 15 x d,
and s =100 x d,, (e,=0.60, dm: 0.5 mm, p=1000 kPa). The results show that
the thickness of shear zones increases with increasing initial void ratio, mean grain
diameter and vertical pressure. The distance between the inclined zones decreases
with increasing e, and decreasing p. For e, > e_the thickness of shear zones almost
reaches the size of the granular body (Figure 9a). If the linearly increasing vertical
pressure (changing from 0 kPa to 1000 kPa) is prescribed (Figure 9b), the increase
of the thickness of shear zones with increasing pressure is more pronounced.
However, the distance between shear zones remains unchanged. The increasc of
the mean grain diameter increases the shear zone thickness as a polar granular body
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Figure 16. Deformed mesh and the distribution of the Cosserat rotation for dense specimen
(e,=0.70+ 0.05r. p=100kPa. d,=0.5 mm) at residual state

is stiffer than a non-polar one using the same constants: the stiffness increases with
increasing mean grain diameter. The work of a polar continuum (Equation (8)) is
augmented, namely, by couple stresses, curvatures and Cosserat rotations which
depend upon d, . Thus, the additional degree of freedom of a polar continuum
mobilises an additional resistance duc to the presence of couple stresses (this
corresponds to the stiffness increase of a hinge joint of a frame by prescribing an
moment).

The location of the weak element influences the geometry of shear zones.
Assuming one weak element in the middle of the specimen, only onc shear zone is
observed (Figure 10).

The initial stress state has also a effect on the geometry of shear zones (Figure
11). The FE—calculations were carried out with the K -initial stress state but with
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Figure 17. Deformed mesh at residual state (u,/h = 0.2 and the evolution of the horizontal force P,
and vertical force P, versus the horizontal u, and vertical displacement u, for dense sand
(¢,=0.60+0.05r, d, =0.5 mm)

K,= 1.0. In this case, the same quantity of shear zones is crcated, but the distance
between the inclined shear zones is slightly larger (s= 100 x d_ ).

The numerical results with the boundary conditions of Figure 3a, the K -initial stress
state (K= 0.4) and the stochastic distribution of the initial void ratio in the specimen
are shown in Figures 12-16. In the calculations, the vertical pressure and the initial
void ratio were varied. The results show that the geometry of shear localisation is
strongly influenced by e, i p. For the small vertical pressure p= 10 kPa (Figure 12),
the number of shear zones (4) is similar as in the case with one weak element (Figures
4 and 5). Their thickness (1=10 x d,)) is slightly smaller. However, the distance
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Figure 18. Distribution of the Cosserat rotation and void ratio for dense specimen
(e,= 0.60+ 0.05r, d_m = (0.5 mm) at residual state (ul/h =02

between the inclined zones (s= 120 x d, ) is larger. If the uniform vertical pressure
becomes greater, only onc shear zone at different places is observed. The thickness
of the shear zone is then about 1= 15 x d_; (Figures 13 and 14). The shapc of this zonc
is slightly parabolic. However, if the vertical pressure increases linearly from 0 kPa
to 100 kPa, three shear zones are created with a thickness of r= 16 x d,, (Figure 15).
The distance between the zones, s=50%d , is significantly smaller than in Figurc 4.
For the medium dense specimen (Figure 16), again three shear zones appear with a

thickness of 1= 20 x d50 and a distance of s= 60 x dso.
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Figure 19. Deformed mesh at vesidual state and the distribution of the Cosserat rotation for dense
specimen (e,=0.60+ 0.05r, d, = 0.5 mm) at residual state (u,/h = 0.2)

The FE—calculations of a plane strain compression test with boundary conditions
of Figure 3b, the K -initial stress state (K = 0.4) and the stochastic distribution of the
initial void ratio in the specimen are shown in Figures 17-20. The effect of the initial
void ratio and its deviation was studied. The calculations show that the gcometry of
shear zones is strongly influenced by ¢, and a. For dense sand and a large deviation
of the initial void ratio (e,=0.60+0.05r), a pattern of shear zones is created
(Figures 17 and 18). Their thickness and distance on the basis of the Cosscrat
rotation are variable. In the case of dense sand and a small deviation of the initial
void ratio (e,=0.60+ 0.005r), only one very wide shear zone occurs (1=30 x d,),
Figure 19. If medium dense sand with a large deviation of the initial void ratio is used
(¢,=0.70+ 0.05r), one very wide shear zone also occurs with a variable thickness

(t=25-30 x d_)), Figure 20.
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Figure 20. Deformed mesh at residual state and the distribution of the Cosserat rotation for medium

dense specimen (e,= 0.70+ 0.05r. d.,= 0.5 mm) at residual state (u,/h=0.2)

5. Conclusions

The following conclusions can be drown on the basis of the performed
FE-studies on shear localisation during plane strain compression tests:

— The shear zones have a tendency for reflection only from fixed or moving

rigid boundarics.

— The geometry of shear zones depends on the conditions along the bounda-

ries of the specimen, initial stress state and the distribution of imperfections.
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— The thickness of shear zones increases with increasing initial void ratio,
pressure level and mean grain diameter. [f the initial void ratio approaches
or cxceeds the pressure-dependent critical void ratio, the shear zone
reaches the size of the granular body.

— The distance betwcen shear zones increases with decreasing initial void
ratio and increasing pressure.

— The polar quantities become noticeable by shearing. The Cosscrat rotation,
the increasing void ratio and the non-symmetry of the stress tensor in the
shear zone, and high gradients of curvatures, stresses and couple stresses at
the shear zone edges can be used to identify shear zones.

The FE—calculations on the patterning of shear zones will be continued.
In addition, the effect of the specimen size on the gcometry of shear zones will be
numerically studied.
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