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Ahsteact: The paper deals with numerical investigations on the patterning of shear zones in granular 
bodies. The behaviour of dry sand during plane strain compression tests was numerically modelled with 
a finite element method using a hypoplastic constitutive relation within a polar (Cosserat) continuum. 
The constitutive relation was obtained through an extension of a non-polar one by polar quantities, viz. 
rotations, curvatures, couple stresses using the mean grain diameter as a characteristic length. This relation 
can reproduce the essential features of granular bodies during shear localisation. The material constants 
can be easily determined from element test results and can be estimated from granulometric properties. 
The attention is laid on the influence of boundaty conditions and the distribution of imperfections in 
the granular specimen on the formation of patterns of shear zones.
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1. Introduction
Localisation of deformation in the form of narrow zones of intense shearing can 

develop in granular bodies during processes of granular flow or shift of objects with 
sharp edges against granular materials. Shear localisation can occur in a single zone, 
in several zones or in a regular pattern. It can also appear along walls of stiff 
structures at granular bodies. The determination of the thickness of shear zones is of 
crucial importance for a realistic estimation of forces transferred from granular 
bodies to structures, e.g. foundations, piles, earth retaining walls or silos (Tejchman 
1989, Brinkgreve 1994, Tejchman 1997). Since the shearing resistance can increase 
with decreasing zone thickness (Tejchman 1998, 2000), resulting dimensionless
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forces are scale-dependent. The thickness of a wall shear zone has also an effect 
on the wall friction angle since both quantities are closely connected (Tcjchman 
1997). A better understanding of shear zones is also important since they usually 
signify the failure of granular bodies.

In this paper, shear localisation in the form of a single or several zones was 
investigated during plane strain compression tests. The FE-analysis was performed 
with a finite clement method on the basis of a hypoplastic law with polar extensions 
which takes into account the effect of density, pressure, deformation direction and 
mean grain diameter. During FE-calcuIations, the emphasis was placed on the 
influence of conditions along boundaries of the granular specimen and imperfections 
inside of the specimen. The specimen size was always the same. In addition, the 
effect of the initial void ratio, pressure level, mean grain diameter and ii itial stress 
state on the thickness and the distance of shear zones was studied.

A single shear zone inside of granular bodies was experimentally studied with 
a biaxial device (Vardoulakis 1980, Yoshida et al. 1994, Tatsuoka et al. 1994, Pradhan 
1997), with a simple shear apparatus (Budhu 1984), with an improved direct shear 
device (Wemick 1978), with a triaxial cell (Roscoe 1970, Lade 1982, Desrues and 
Hammad 1989, Desrues et al. 1996, Yagi et al. 1997) and with a torsional shear 
device (Schanz et al. 1997). Several shear zones were observed with a simple shear 
apparatus (Scarpelli and Wood 1982), a biaxial apparatus (Flan and Vardoulakis 1995), 
with a triaxial cell (Desrues et al. 1996), in model tests with footings (Tatsuoka et al. 
1991), during shear tests (Stazhevskii and Revushenko 1992, Tejchman 1997), in earth 
pressure tests (Schwing 1991, Tejchman 1997), during trap-door experiments 
(Vardoulakis et al. 1981) and in tests in a hopper (Tejchman 1989). The behaviour of 
granular bodies along a wall with different roughness was experimentally mvestaigated 
with a Casagrande shear apparatus (Potyondy 1961, Sondcrmann 1983. Desai et al. 
1985), with an improved direct shear device (Wemick 1978, Tcjchman 1997), with 
a torsional ring shear apparatus (Neuffer and Leibnitz 1964, Yoshimi and Kisb: la 1981, 
Loffclmann 1989), with a ring shear device (Brummund and Leonards 1973), with 
a simple shear device by Roscoe (Uesugi et al. 1988), with a biaxial apparatus 
(Tcjchman 1989, Tcjchman and Wu 1995), with a Couette apparatus (Loffclmann 1989), 
with model silo tests (Tejchman 1989, Nedderman and Laohakul 1980) and with pull
out tests (Wernick 1978).

Experimental results show that the thickness of a shear zone niside granular 
bodies is not constant. It increases with increasing grain diameter (Tejchman 1989, 
Vardoulakis 1980, Yoshida et al. 1994, Hassan 1995), wall stiffness (Loffclmann 
1989), wall roughness (Tejchman 1989, Uesugi et al. 1988, Untcrreiner et al. 1994. 
and shear velocity (Loffclmann 1989), and decreases with i icreasing initial density 
(Tejchman 1989, Hassan 1995). The influence of grain properties and of the 
direction of the deformation has not been studied to such an extent (Yoshida et al. 
1994). The effect of the pressure level on the thickness of a shear zone has not yet 
been clarified. Biaxial tests (Desrues and Hammad 1989, Yoshida et al. 1994), 
showed a decrease of the thickness with increasing pressure. However, wall friction



tests (Loffelmann 1989, Hassan 1995) and silo model tests (Tejchman 19X9, 
Nedderman and Laohakul 1980) performed in the range of low pressures, 
demonstrated an inverse trend. The observed thickness of shear zones inside of 
granular bodies varies from 5 to 20 times the mean grain diameter (Vardoulakis 
1980, Yoshida ct al. 1994, Dcsrues and Hammad 1989). It varies from 1 x {fso along 
a smooth wall up to 40 x along a very rough wall (Tejchman 1989). The distance 
between shear zones was found to be dependent on the void ratio of the granular 
specimen, conditions along the boundaries, sample size and imperfections (Lade 
1982, Gudehus 1986, Han and Vardoulakis 1991, Dcsrues ct al. 1996, Tejchman 
1997). The observed localisation patterns had often a character of self-organisation 
(Gudehus 1986, Dcsrues ct al. 1996, Tejchman 1997). Within shear zones, 
pronounced grain rotations (Oda ct al. 1982, Uesugi ct al. 1988, Tejchman 1989. 
Loffelmann 1989) and couple stresses (Oda 1993). large strain gradients (Yoshida 

ct al. 1994) and high void ratios (Dcsrues ct al. 1996, Oda ct al. 1997) are 
observed. Tests by Dcsrues ct al. 1996 revealed that the void ratio in a shear zone 
was equal to its critical value. However, Oda ct ml. (1997) and Oda and Kazama 
(1999) found void ratios in the shear zone higher than cri cal.

The formation of shear zones inside granular bodies has been numerically 
investigated within continuum mechanics using different approaches: softening 
elasto-plastic (Shuttle and Smith 1988, Ncedleman and Tvcrgaard 1992, 
dual-yield hardening elasto-plastic (Raniakrshnan and Atluri 1994, Hicks 
1998), hardening elasto-plastic with enriched shape functions (Leroy and Ortiz 
1989), hardening elasto-plastic with remeshing (Pastor and Peraire 1989, Hicks 
1998), hardening elasto-plastic using an explizit technique (Cundall 1989, Hobbs and 
Ord 1989, Poliakov ct al. 1994), hardening and softening elasto-plastic with 
bifurcation analysis (dc Borst 1988), softening visco-plastic (Loret and Prevost 1991, 
Sluys 1992, Belytschko ct al. 1994), softening non-local elasto-plastic (Brinkgreve 
1994), softening elasto-plastic with higher-order gradients (de Borst ct al. 1992, 
Pamin 1994), softening polar elasto-plastic (Miihlhaus 1989, Tejchman 1989, de 
Borst 1991, Tejchman and Wu 1993. L'etsche 1993, Tejchman 1997), and softening 
polar hypoplastic (Tejchman and Bauer 1996, Tejchman 1997, Tejchman and Hcrle 
1999, Tejchman ct al. 1999, Tejchman 2000). FE-rcsults within a conventional 
continuum were determined by the resolution of the mesh and thus produced 
unreliable results, i.c. the shear zones became narrower upon mesh refinement and 
computed force-displacement curves were considerably depending on the thickness 
of the calculated shear zone (Tejchman 1989, 1994, 1997, Brinkgreve 1994). Thus, 
a realistic modelling of the thickness of shear zones is only possible with constitutive 
relations which include a characteristic length (Miihlhaus 1989, Tejchman 1989, de 
Borst ct al. 1992). FE-results converge to the finite size of the shear zone in a mesh 
refinement (Miihlhaus 1989, Tejchman 1997) and initial and boundary value 
problems become mathematically well-posed (Bcnallal ct al. 1987, M -hlhaus 1989, 
de Borst ct al. 1992) V polar approach seems to be more suitable for regularisation 
in granular bodies than other models such as non-local, strain gradient and viscous
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(Sluys 1992). It takes into account rotations and couple stresses which are observed 
during shearing but remain negligible during more uniform deformation (Tejchman 
1989, Oda et al. 1982). Numerical results obtained with a polar hypoplastic law 
(Tejchman 1998, Tejchman et al. 1999, Bauer and Huang 1999, Tejchman 2000) 
showed that the thickness of a shear zone appearing inside a granular body during 
biaxial tests and shearing of an infinite planar layer increases with increasing initial 
void ratio, pressure level and mean grain diameter. The geometry of shear zones and 
the distance between them was found to be dependent on the distribution of 
imperfections (Hobbs and Ord 1989, Tejchman and Wu 1993), system size, confining 
pressure, shear modulus and ratio of wave propagation to velocity of loading 
(Poliakow et al. 1994, Tejchman and Wu 1997).

The paper is organised as follows. At the beginning, a polar hypoplastic 
constitutive model is briefly outlined (Section 2) mentioning advantages and 
limitations. Attention is also given to the calibration of the constitutive parameters. 
Next, the finite clement implementation is briefly described (Section 3). Results for 
plane strain compression tests are presented in Section 4. In Section 5 some 
conclusions are outlined.

2. Material behaviour

2.1 Hypoplasticity
Hypoplastic constitutive models are an alternative to elasto-plastic formulations 

for modelling granular materials (Kolymbas 1987, Gudehus 1994, 1996, 1997, 1998, 
Bauer 1996, von Wollersdorff 1996, Wu et al. 1996, Wu and Niemunis 1996, Herle 
1997, 1998). In contrast to elasto-plastic models, a decomposition of deformation into 
clastic and plastic parts is not made. Yield surfaces, plastic potenr,als, flow rules and 
hardening and softening rules are not needed. Parameters of recent hypoplastic 
models are closely related to granulometric properties and can thus be estimated 
from mean grain diameter, non-uniformity, grain shape and grain hardness (Herle 
1997, 1998). They hold for a wide range of densities and pressures.

Hypoplastic models describe the mechanical rearrangement of so-called simple 
grain skeletons assuming that the macroscopic state can be sufficiently characterised 
by mean values of stress and density. The following properties arc incorporated:

— the state is fully defined through the skeleton (or effective stress) and the 
void rat' a (inherent anisotropy 5 not considered, and vanishing stresses are 
not allowed);

— deformation results only from grain rearrangements (small deformations 
with nearly clastic behaviour of grain contacts are not considered);

— granulometric properties are permanent, i.e. abrasion and crushing of grains 
are restricted;

— there are pressure-dependent minimum, maximum and critical void ratios;
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— the material exhibits an asymptotic behaviour for monotonous and cyclic 
stretching and SOM-states for proportional compression;

— the response is rate-independent;

— physico-chemical effects, in particular capillary and osmotic pressures, and 
cementation of grain contacts are not taken into account.

The hypoplastic relations are of the rate type and consist of non-linear tensorial 
functions. Due to the incremental non-linearity with regard to the deformation rate, 
a hypoplastic model can describe non-linear stress-strain and volumetric behaviour 
up to and after the peak with a single tensorial equation. Also included is the 
dependence on pressure level, density and direction of deformation rate, and 
dilatancy or contractancy during shearing with constant pressure, respectively 
increase and release of pressure during shearing with constant volume. Advantages 
of the model are its simplicity and an easy procedure for determination of material 
constants with standard laboratory experiments (Hcrle 1997, 1998, Merle and 
Gudehus 1999). In case of quartz sand, the hypoplastic constitutive law is 
approximately valid in a pressure range 1 kPa<-cru /3<  1000 kPa (Hcrle 1997). 
Below it, additional capillary forces due to the air humidity and van dcr Waals forces 
may become important, and above it, grain crushing. A hypoplastic constitutive law 
cannot, however, describe realistically shear localisation since it has not 
a characteristic length. In order to take into account a characteristic length and to 
describe the kinematics and thickness of shear zones in granulates polar terms were 
introduced into a hypoplastic constitutive model by Gudehus (1996) and Bauer 
(1996) by means of a polar (Cosserat) continuum (Miihlhaus 1989, Schafer 1962).

2.2. Polar continuum
A polar (Cosserat) continuum differs from a non-polar one by additional 

rotations (Schafer 1962). For plane strain or axial-symmetry each material point has 
three degrees of freedom: two translations ay and ur  and one rotation oV (Figure I). 
o)c is related with the micro-rotation and is not determined by the displacements as

x 2

X

Figure 1. Degrees of freedom in a plane strain Cosserat continuum: i/; — horizontal displacement, 
u; — vertical displacement, a>‘ — Cosserat rotation
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in a non-polar continuum:

®,; =0.5(», j - U j j ) .  (1)

Dcfonnation within a polar continuum is described by the following six quantities 
(which are considered here as small increments):

£| J ^| J ? &22 11 -\21 (2)

£|2 = U12 +6>l , £2i =U2\-CO‘\  (3)

K*, = foj, k2 = (o'2 , (4)

§ are components of the deformation tensor and k . are components of the 
curvature vector. The extensions are defined similarly as in a non-polar continuum. 
The deformations £ |2 and c2| can be viewed as a relative deformation relating the 
displacement gradient and the micro-rotation; in contrast to a non-polar continuum 
£12 is not generally equal to e2|. The curvatures k ] and k2 describe the gradients of 
the micro-rotation. £.. and k . are invariant with respect to rigid body motions 
(Miihlhaus 1990). The six dcfonnation quantities are energy-conjugate with the six 
stress quantities. Four components of £.. are associated with four components of the 
stress tensor cr which is now in general non-symmetric. The curvatures k . are
associated with couple stresses m.. Figure 2 shows stresses cr. and couple stresses
m at an element. Force and moment equilibrium require:

°U.l +Cr!2.2 ~ f\ = 0’ (5)

cr2IJ + (7 ^  - / /  =0, (6)

mu +m22 +cr2l - d l3 - m B =0, (7)

where f f  and mB are the volume body forces and volume body moment, 
respectively. Equations (5) -  (7) are equivalent to the virtual work principle:

f (cr &  + mSK )dV = f ( f f Su.  +mBSa)‘ )dV + f / Su dA + f mSod dA, (8)JB ■' ' ' JB 1 1 J r:B

where t = g n and m - m n .  t and m are prescribed boundary tractions and 
moment on the boundary d fi  and d2B with the normal vector ir , Sf.  and bx- 
denote virtual deformations and curvatures, respectively, 5u arc virtual 
displacements, 8(oc is a virtual Cosserat rotation, A stands for the surface, and 
V denotes the volume. Virtual displacements and Cosserat rotations vanish on those 
parts of the boundary where kinematic boundary conditions are prescribed. The 
virtual work principle is used to formulate the FE-equations of motion in a polar 
continuum (Tejchman 1989, 1997, Sluys 1992, Miihlhaus 1989, Murakami and 
Yoshida 1997, Grocn 1997). As a consequence of micro-rotations and couple 
stresses, the constitutive equation is endowed with a characteristic length
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corresponding to the mean grain diameter. Thus, numerical results become 
independent of the spatial discretisation, and initial or boundary value problems 
remain mathematically well-posed. The polar approach can model the thickness of 
shear zones and scale effects (Miihlhaus 1989, Tejchman 1989, 1997).

An elasto-plastic constituive law within a polar continuum was first proposed by 
Miihlhaus (1989, 1990), and was successfully applied in various boundary value 
problems involving shear localisation (Tejchman 1989, 1997, Miihlhaus 1990. 
Unterreiner et a!. 1994, de Borst 1991, Tejchman and Wu 1993, 1995 Dietsche 
1993, Tejchman and Gudchus 1993, Murakami and Yoshida 1997, Groen 1997, 
Papanastasiou and Vardoulakis 1992, Steinmann 1995, Yoshida et at. 1997).

2.3 Polar hypoplasticity
The polar extension of the hypoplastic law (Tejchman et at. 1999, Tejchman and 

Herle 1999) for the case of plane strain can be abbreviated as:

= F(e.d,„,(Ju ,mk,dll ,kk). (9)

"h = f (e.  dkil,cr ,̂, mk, dkl, kk), GO)

<t and m. arc the Cauchy stress tensor and Cauchy couple stress vector, 
respectively, and e denotes the void ratio. The Jaumann stress rate tensor f r , 
Jaumann couple stress rate vector in, the polar rate of deformation tensor d ' and 
the rate of curvature vector k. are defined by:

(ID

m, = mj -0 .5  wik mk + 0.5mk wu, (12)

d 'ii =  d n +  Wii ~  Wi, ’ k , =  VV«  =  ° ’ H 2I =  - * I 2  =  h '1 , ( 13)

d ii = 0.5(v(< / + v.,) mv = 0.5(y + v,,), (14)

d. is the classical (non-polar) rate of deformation, w denotes the classical (non
polar) sp;n tensor, vv. = to' is the rate of the Cosserat rotation, and v represents the 
spatial gradient of velocity. If the volume of grains remains constant, the rate of the 
void ratio can be expressed b}.

e = {\ + e)dkk.

The follow ing representations of the constitutive equations are usee

= /« fA, [ ° u . >dh .K <*%)+f t  N„ ) f d ‘udL + kt k1K  ,

m,/ d5o = L m ( V u ,”h -du>kkd5a) +  LN -(m , )sjd‘ud ‘u + k kkkd'w ,

(15)

(16)

(17)
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wherein the normalised stress tensor and the normalised couple stress vector are 
defined by:

Hint; -  ■
( I S )

The scalar factors f s =fs {e, akk) and f d = f d (e, atk) take into account the 
influence of the density and pressure level on the stress and the couple stress rates. 
The stiffness factor fs is proportional to the granulate hardness h and depends on 
the mean stress and void ratio:

h f \  + 4  'S
(  ° kk 1

nhj { e J (19)

with

, 1 1h = —  + —
c 3

y»

e..„ -  e. ,V3 ' (20)

The granulate hardness hs is related to the skeleton. The density factor/^, kind 
of a pressure-dependent relative density index, is represented by:

1  = e, -  e. (21)
Here e is the current void ratio, e is the critical void ratio, e, denotes the void 

ratio at maximum densification due to cyclic sheari ig, e is the maximum void ratio, 
and a  and n are constants. The void ratio e is bounded thus by e and e The 
values of e., ed and e are assumed to decrease with the pressure —er according to 
the equations (Bauer 1996)

e, = ?,oexP

: e„0 exp

e, = <?,„ exp

- { -a *  IK)

-(-<*«/ * J

( 22)

(23)

(24)

wherein e.Q, eM and eM arc the values of e., ed and ec for a  = 0, respectively. 
For the tensor and vector functions L... L cr  N and N ‘\ the following representations 
are used:

Ay = + °ij(oud ru ^m ,kkdw\  ud ‘u + ih,kkd,„), (25)

^  =a,(6f  + ct‘ ), N(l = a; am, (26)
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where:

= c , + c : \/c r’ <T* [ l  + c o s ( 3 0 ) ] ,  c o s ( W )  = - - - - - - -  (o'uo lma'mk ) , (27)

C'l
f j  (3 -sin0 , )

V8 sin0(
3 (3 + sin0( ) 
8 sin0( (28)

0 is the critical angle of internal friction, 0 denotes the Lode angle, i.c. the angle on 
the deviatoric plane o-! + cr2+ ct3= 0 between the stress vector and the axis it, (rr) is 
a principal stress component). The coefficient at l lies empirically in the range 3 to 
4.5. The dimensionless polar constant ac controls the influence of the Cosserat 
quantities on the material behaviour. It lies in the range of 1.0-5.0 and is correlated 
with the grain roughness; the higher the constant a , the smaller are the polar 
effects, o ’ denotes the deviatoric part of a  . For an isotropic stress state with

cr =0, cos(30) = Oand a ,1 =c, hold in Equation (27).
The polar extension of the hypoplastic law was achieved analogously to 

Miihlhaus's formulation (1989). First, the term in the non-polar function L with the 
power of the stress ratio tensors and the non-polar modulus of the deformation rate 
|k/wff were extended by the polar quantities nf k t d ,0 and k k d502, respectively. 
Therein, the polar deformation rates d ‘‘ were used. The non-polar function /V 
was left unchanged. The polar function L* was similarly defined as L., However, 
the function KC.c had to be assumed in another way than N since the evolution of 
couple stresses during shearing is different from that of stresses due to their skew 
symmetry and lack of sign restriction (Tejchman 1994). Assuming that the material 
has an asymptotic behaviour both for stresses and couple stresses during 
monotonous shearing, the function Nf  was found by fitting the numerical results for 
shearing of an infinite layer between two very rough walls (Tejchman 1994, 1997, 
2000) with a theoretical solution within a polar elastic continuum (Schafer 1962), and 
with a numerical solution wdthin a polar elasto-plastic continuum (Tejchman 1997). 
The linear term f sL f in Equation (17) causes an increase of couple stresses, and the 
non-linear term f sf dN- \Jd‘ud ‘kl + kkktd?n in Equation (17) reduces them to reach 
a stationary value during stationary shearing. Other linear and non-linear 
representations of /Vj were tested in FE-calculations. However, the most realistic 
results were obtained with the given representation of N ‘. In addition, the function 
N ‘‘ in the polar hypoplastic law was verified by results of other boundary value 
problems involving shear localisation (Tejchman 1997). If the characteristic length 
d}0 becoms infinitely small, the polar hypoplastic model (Equations (9) - (28)) 
reduces to the non-polar one.

The polar hypoplastic constitutive relation includes only 9 constants: e c /l)t c 
0 , If, a , , df0 and a . The parameters If and n can be determined from a single
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oedomelric compression test with an init ally loose specimen; A reflects the slope of 
the curve in a scmilogarithmic representation, and n its curvature. The constant 
a can be found from a triaxial test v ith a dense specimen. It reflects the height and 
position of the peak value a the stress-strain curve. <j> is the angle of internal friction 
in the critical (residual) state which can be estimated from the angle of repose if 
cohesive forces arc negligible or measured i i a triaxial test with a loose specimen. It 
depends mainly on the grain size and angularity, being only little affected by 
non-uniformity of the grain size distribution (Hcrle 1997). The values of <?(), e e 
and r/;„ can be obtained with simple index tests ( c„*e  , e, ~ e  . e ~ 1.5c ).
All parameters arc closely related to the grain size distribution and grain shape 
as was shown by Merle and Gudchus (1999), and Herlc (1997) for various 
quartz sands. The following material constants for so-called Karlsruhe sand were 
used: e = 1.3, <? =0.51, e =0.82, 0=30°, A = 190 MPa, a = 0.3, a =1*5, 
d}()= 0.5 mm. The polar constant was found to be a = a _l.

The capability of a polar hypoplastic approach in solving boundary value 
problems involving tocalisatim such as biaxial test, simple shearing, silo flow, footing, 
sand anchor was demonstrated by Tejchman et al. (1999), Tejchman and Bauer 
(1996), Tejchman (1997), Tejchman and Herle (1998, 1999), Wehr et al. (1998), 
Wchr and Tejchman (1999). A close agreement between calculations and 
experiments was achieved. The FK-ealculations showed also that the thickness of 
shear zones did not depend upon the mesh discretisation if the size of finite element' 
in the shear zone was not more than five times the mean grain diameter when using 
triangular finite elements with linear shape functions for displacements and a 
Cosserat rotation (Tejchman and Bauer 1996, Tejchman 1997). Numerical 
calculations by Sluys (1992) and Groen (1997) within a polar continuum also indicate 
that convergence to a unique solution can only be obtained when the element size is 
small enough compared to the width of the localised zone.

3. Finite Element implementation
The FF-calculations of quasi-static plane strain compression tests were 

performed for a sand specimen with a height of It = 50 mm and a length of 
/=100m m . Quadrilateral finite elements composed of four diagonally crossed 
triangles were applied to avoid volumetric locking (Nagtegaal et al. 1974, Groen 
1997). Totally, 3200 triangular elements were used. The height and the width of the 
quadrilateral elements was 2.5 mm (5 *<f50). The integration was performed with 
three sampling points placed in the middle of each clement side. Linear shape 
functions for displacements and the Cosserat rotation were used. The calculations 
were carried out with large deformations and curvatures (updated Lagrange 
formulation), changing the element configuration and the element volume (Bathe 
1982). As the initial stress state in the granular specimen, a A'u-state without polar 
quantities (ffn = Y+-*2, °n = <Jn~ ^»L ,X2 ' Oj2= <T, = »!, = m2 = Q) was assumed 
((tm -  horizontal normal stress, cr,2 -  vertical normal stress, <r12 -  horizontal shear 
stress, <72| -  vertical shear stress, m -  horizontal couple stress, /;/, -  vertical couple
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Figure 2. Stresses cx( and couple stresses nr at an element o f a plane strain Cosserat continuum

a)

frrrrm p

b)

Figure 3. Plane strain compression test: a) deformation produced by horizontal displacements of both 
sides (u ] = it') and vertical pressure on the top p, b) deformation produced by horizontal displacement 
o f both sides (u ‘ = p r), and vertical displacement o f the top (u[ = i/;' = u') I — left, r — right, t — top

stress (Figure 2), y -  initial density, x2 -  vertical coordinate measured from the top, 
K0 = 0.4 -  pressure coefficient at rest). In addition, the calculations were carried out 
with K0 = 1.0.

Two different sets of boundary conditions were assumed. In the first case, the 
bottom was smooth, the smooth top was subject to the uniform vertical pressure />. 
and the vertical smooth sides were subject to equal horizontal displacement 
increments directed to the specimen inside (Figure 3a). The boundary conditions 
were along the bottom: u2= 0, ar = 0 and iif = 0, along the top: cr2,=  -p, crp = 0 and 
m =0. along the left side: u l = nAu, 0^ = 0 and m2= 0, and along the right side: 
u =-nAu, cr2| = 0 and m -  0. In the second case, the bottom was smooth, the 
smooth top was subject to uniform vertical displacement increments directed to the 
specimen outside, and the vertical smooth sides were subject to equal horizontal 
displacement increments directed to the specimen inside (Figure 3b). The vertical 
displacement was equal to the horizontal one. The boundary conditions were along 
the bottom: u2=0, <rp = 0  and ml= 0, along the top: u2= tiAu, a\2= 0 and mf = 0, 
along the left side: tq = nAii, ct2| = 0 and = 0, and along the right side: = -nAit,



496 J. Tejchman

(T7| = 0 and m2= 0. n denotes the number of the time steps, A;; is the constant 
displacement increment in one step. The displacement increments were chosen as 
Au/h = 0.0001. About 2000 steps were performed.

To produce shear localisation, two different k mds of imperfections were applied. 
First, a weak element with a large initial void ratio, eQ=0.90, was inserted in the 
middle of the left side of the specimen. Second, the ' Vial void ratio was distributed 
stochastically ;n the specimen elements by means of a random generator in such 
a way that the initial void ratio a was increased in every clement by the value a • /\ 
where <7=0.05 and r is a random number within the range of (0.01, 0.99). In 
addition, the weak element was i nserted in the middle of the specimen

For the solution of the non-linear equation system, a modified Ncwton-Raphson 
scheme with line search (Bathe 1982) was used with a global stiffness matrix 
calculated with only two first terms of the constitutive equations which are linear in
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Figure 4. Deformed mesh at residual state and the evolution o f  the horizontal force Pj versus the
horizontal displacement Ift fo r  dense sand (e0 = 0.60, p =  100 kPa, d  = (1.5 mm)
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dJ  and fd5Q. The stiffness matrix was updated every 100-200 steps. To accelerate 
the calculations in the softening regime, the initial increments of displacements and 
the Cosserat rotation in each calculation step were assumed to be equal to the entire 
increments in the previous step (Vermeer and van Langen 1989, Tejchman 1989). 
The iteration steps were performed using translational and rotational convergence 
criteria, for the time integration of stresses and couple stresses in finite elements, 
a one-step Euler forward scheme was applied.

4. Numerical results
The FE-calculations of a plane strain compression test with the boundary 

conditions of Figure 3a, the /^-initial stress state (Kg -  0.4) and one weak clement in 
the middle of the left side are shown in Figures 4-9. Figures 4 and 5 show the 
evolution of the resultant horizontal force acting on the sides with the horizontal

Figure 5. Distribution o f  the Cosserat rotation and void ratio for dense specimen
(e(l = 0.60, p  = 100 kPa, dsll = 0.5 mm) at residual state (u/ 111 * 0 .1 )
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Figure 6. Deformed mesh am! the distribution o f  the Cosserat rotation and void ratio lor medium
dense specimen (er) = 0.75, p  — 100 kPa, cLtl = 0.5 runt) at residual state (uph — 0.1)



Numerical Studies on Patterning o f  Shear Zones in Granular Bodies

Figure 7. Deformed mesh and the distribution o f  the Cosserai rotation and void ratio for dense
specimen (etl = 0.60, p  = 100 kPa. d)n = 1.0 mm) at residual slate (u f h  = 0.1)
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Figure S. Deformed mesh and the distribution o f  the Cosserat rotation and void ratio Jor dense
specimen (e = 0.60, p  = 1000 kPa, d v< = 0.5 nun) at residuaI state (u/ ih = 0.1)
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a)

Figure 9. Distribution o f the Cosserat rotation at residua! slate iu/ Hi = 0. 1): a) loose sand (e:l -  0.S5. 
p - 1 019 kPa. d tll = 0.5 nun, b) dense sand (en = 0.60, p  = 0-1000 kPa. tlw = 0.5 nun)

Figure 10. Deformed mesh for dense sand (<f = 0.60, p  = 100 kPa, d5ll = 0.5 mm) at residua! state
(;// !h = 0.1) with one imperfection element in the middle o f  the specimen
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Figure 11. Deformed mesh fo r  dense sand (en= 0.60, p = 100 kPa, dm = 0.5 mm) at residual state
(ul /h = 0.1) with A'(= 1.0

Figure 12. Deformed mesh and the distribution o f  the Cosserat rotation fo r  dense specimen
(eg= 0.60+ 0.05); p = 10 kPa, c/w = 0.5 mm) at residual state
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Figure 13. Deformed mesh and the distribution o f the Cosserat rotation fo r  dense specimen 
(ef = 0.60+ 0.05t: p = 100 kPa. dw = 0.5 mm) at residuaI state

displacement, the deformed FE-mcsh, the distribution of the Cosserat rotation and 
void ratio at residual state for dense sand (<?0=0.60, c/50=0.5 mm, p=  100 kPa). 
The magnitude of the Cosserat rotation is marked by circles with a maximum 
diameter corresponding to the maximum rotation in the given step. In turn, the grade 
of an increase of the void ratio is marked by a dark region. Darker region indicates 
higher void ratio. The void ratios were taken as the mean values in each 
quadrilateral element.

All state variables (forces, stresses, couple stresses, void ratios) lend to 
asymptotic values. Due to the formation of shear zones, the calculated horizontal 
force indicates large softening. The vertical force on the top is constant, and equal to 
10 kN. During deformation, two shear zones are first created expanding outward 
from the weakest element. Afterwards, the shear zone propagating towards the 
inmovable bottom, reflects from it and moves next to the right side and reflect again 
towards the top. Thus, four shear zones are visible. The shear zones arc marked out
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Figure 14. Deformed mesh and the distribution o f the Cosserat rotation fo r  dense specimen 
(ef = 0.60+ 0.05r, p = 1000 kPa. dsi) = 0.5 mm) at residual state

by the concentration of displacements and Cosserat rotations and by an increase of 
the void ratio. The thickness of the shear zones on the basis of displacements and 
Cosserat rotations is about t=  13 x r/J0, and the distance between two inclined shear 
zones .•> = 90 x </ . The thickness of the shear zones on the basis of an increase of 
the void ratio is larger since dense granular material dilates before the shear zone is 
created (Herlc 1997). The Cosserat rotations are only noticeable in the shear zone. 
They appear only when a shear zone occurs. Outside the shear zone, they are 
negligible. The void ratio changes across the shear zone from 0.65-0.79. Outside the 
shear zone, the void ratio is e = 0.55, and is lower than its initial value of 0.60 since 
the granular material undergoes contractancy at the beginning of shearing. 
The largest void ratio in the shear zone corresponds approximately to the critical 
value e (Equation (24)).

The effect of the initial void ratio <?0, vertical pressure p and the mean grain 
diameter d .  is presented in Figures 6-8. The following results of t and .s- were
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Figure 15. Deformed mesh and the distribution o f  the Cosserat rotation for dense specimen 
(en = 0.60+ 0.05r, p = 0 -100 kPa, d5a = 0.5 mm) at residual state

obtained: t = 2 5 * d so and s = 85 * d50 (e0 = 0.75, d50 = 0.5 mm, /?=100kPa), 
t = 9 x d 5Q and .9 = 45 x d 50 (eg = 0.60, d50 = 1.0 mm, /? = 100 kPa), and / = 15 x d.() 
and 5= 100 x ^50 (e0 -  0.60, d^a-  0.5 mm, p=  1000 kPa). The results show that 
the thickness of shear zones increases with increasing initial void ratio, mean grain 
diameter and vertical pressure. The distance between the inclined zones decreases 
with increasing eQ and decreasing p. For eQ > e. the thickness of shear zones almost 
reaches the size of the granular body (Figure 9a). If the hnearly increasing vertical 
pressure (changing from 0 kPa to 1000 kPa) is prescribed (Figure 9b), the increase 
of the thickness of shear zones with increasing pressure is more pronounced. 
However, the distance between shear zones remains unchanged. The increase of 
the mean grain diameter increases the shear zone thickness as a polar granular body
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Figure 16. Deformed mesh and the distribution o f the Cosserat rotation for dense specimen 
(e0-  0.70+ 0.05r, p = 100 kPa. dso = 0.5 mm) at residual state

is stiffer than a non-polar one using the same constants: the stiffness increases with 
increasing mean grain diameter. The work of a polar continuum (Equation (8)) is 
augmented, namely, by couple stresses, curvatures and Cosserat rotations which 
depend upon d i0. Thus, the additional degree of freedom of a polar continuum 
mobilises an additional resistance due to the presence of couple stresses (this 
corresponds to the stiffness increase of a hinge joint of a frame by prescribing an 
moment).

The location of the weak element influences the geometry of shear zones. 
Assuming one weak element in the middle of the specimen, only one shear zone is 
observed (Figure 10).

The initial stress state has also a effect on the geometry of shear zones (Figure 
11). The FE-calculations were carried out with the ^-initial stress state but with
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Figure 17. Deformed mesh at residua! state (w; 111 = 0.2) and the evolution o f the horizontal force P 
and vertical force P, versus the horizontal and vertical displacement u, for dense sand 

(e0= 0.60+ O.OSr, dfe = 0.5 nun)

K0= 1.0. In this case, the same quantity of shear zones is created, but the distance 
between the inclined shear zones is slightly larger (s = 100 * r/ ).

The numerical results with the boundary conditions of Figure 3a, the A'-initial stress 
state (K — 0.4) and the stochastic distribution of the initial void ratio in the specimen 
are shown in Figures 12-16. In the calculations, the vertical pressure and the initial 
void ratio were varied. The results show that the geometry of shear localisation is 
strongly influenced by e0 i p. For the small vertical pressure p=  10 kPa (Figure 12), 
the number of shear zones (4) is similar as in the case with one weak element (Figures 
4 and 5). Their thickness (/= 10 x d5Q) is slightly smaller. However, the distance
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Figure 18. Distribution o f the Cosserat rotation and void ratio fo r  dense specimen 
(e0= 0.60+ 0.05r, dfn = 0.5 mm) at residua! state (\\Jh = 0.2)

between the inclined zones (,v = 120 x dm) is larger. If the uniform vertical pressure 
becomes greater, only one shear zone at different places is observed. The thickness 
of the shear zone is then about t= 15 x d50 (Figures 13 and 14). The shape of this zone 
is slightly parabolic. However, if the vertical pressure increases linearly from 0 kPa 
to 100 kPa, three shear zones are created with a thickness of /= 16 x d (Figure 15). 
The distance between the zones, 50xd5Q, is significantly smaller than in Figure 4 
For the medium dense specimen (Figure 16), again three shear zones appear with a 
thickness of t= 20 x d50 and a distance of s= 60 x d5Q.
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Figure 19. Deformed mesh at residua/ state and the distribution o f  the Cosscrat rotation for dense 
specimen (e{ = 0.60+ 0.05r, dsil = 0.5 mm) at residual state ( u f h  = 0.2)

The FE-calculatinns of a plane strain compression test with boundary conditions 
of Figure 3b, the AT0-in:tir 1 stress state (AT0= 0.4) and the stochastic distribution of the 
initial void ratio in the specimen are shown in Figures 17-20. The effect of the initial 
void ratio and its deviation was studied. The calculations show that the geometry of 
shear zones is strongly mfluenced by <?n and a. For dense sand and a large deviation 
of the initial void ratio (e0= 0.60+ 0.05/-), a pattern of shear zones is created 
(Figures 17 and 18). Their thickness and distance on the basis of the C'osserat 
rotation are variable. In the case of dense sand and a small deviation of the initial 
void ratio (e0= 0.60 + 0.005/-), only one very wide shear zone occurs (/= 30 x c fj. 
Figure 19. If medium dense sand with a large deviation of the initial void ratio is used 
(e = 0.70+ 0.05/-), one very wide shear zone also occurs with a variable thickness 
(/= 25-30 x d50). Figure 20.
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Figure 20. Deformed mesh at residual slate and the distribution o f the Cosserat rotation for medium 
dense speeimen (en= 0.70 + 0.05r. dw = 0.5 mm) at residua! state ( ujh  = 0.2)

5. Conclusions
The following conclusions can be drown on the basis of the performed 

FE-studies on shear localisation du ng plane strain compression tests:

— The shear zones have a tendency for reflection only from fixed or moving 
rigid boundaries.

— The geometry of shear zones depends on the conditions along the bounda
ries of the specimen, initial stress state and the distribution of imperfections.
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— The thickness of shear zones increases with increasing initial void ratio, 
pressure level and mean grain diameter. If the initial void ratio approaches 
or exceeds the pressure-dependent critical void ratio, the shear zone 
reaches the size of the granular body.

— The distance between shear zones increases with decreasing initial void 
ratio and increasing pressure.

— The polar quantities become noticeable by shearing. The Cosserat rotation, 
the increasing void ratio and the non-symmetry of the stress tensor in the 
shear zone, and high gradients of curvatures, stresses and couple stresses at 
the shear zone edges can be used to identify shear zones.

The FE-calculations on the patterning of shear zones will be continued.
In addition, the effect of the specimen size on the geometry of shear zones will be
numerically studied.
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