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Abstract: The present work concerns the description of phenomena taking place within intcrfacial regions 
during a flow of water which is accompanied by heterogeneous flashing. The main aim of the work is to 
present a unified approach to first order phase transitions with the inclusion of capillary effects and to 
built on this basis a mathematical model describing nonequilibrium two-phase flows, in which the 
properties of the mixture include capillary components.

The analysis of the problem was started with a discussion of physical aspects of flashing, which are 
the contents of Chapter 2. On the basis of the experimental data analysis a physical model of the 
phenomenon was formulated.

In Chapter 3 a gradient description of first order heterogeneous phase transitions was given. The analysis 
was begun with a discussion of the properties and structure of intcrfacial areas. On the basis of the 
analysis constitutive equations for reversible stress tensor and free energy of a two phase system treated 
as a homogeneous medium were formulated. The constitutive equations include capillary components 
modelled by means of the dryness fraction gradients and resulting from the nonuniformity of the system 
caused by the existence of two phases and intcrfacial surfaces.

On the basis of the proposed theory a homogeneous model of two-phase flow with capillary effects was 
derived, which is a subject of Chapter 4. Taking into consideration the assumptions of the homogeneous 
model, one-dimensional balance equations for mass, momentum and energy of the mixture and mass of 
vapour were derived. A constitutive equation for the source term appearing in the last equation was 
obtained on the basis of the theory of internal parameters with the usage of the proposed form of free 
energy including a gradient term known from the second gradient theory. The remaining constitutive 
equations for the density of the two-phase system, wall shearing stresses and capillary pressure were 
also given.
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The proposed mathematical model was investigated from the point of view of wave properties, which 
were discussed in Chapter 5. The analysis of small disturbations was conducted, as a result of which a 
dispersion equation was obtained giving a relation between the velocity of disturbations, attenuation 
coefficient and frequency. This dispersive model was then applied for the prediction of critical mass flux 
in a channel flow using P1F method. On the basis of the comparison of the model predictions with 
experimental measurements a reasonably good agreement was found.

In Chapter 6 the results of numerical calculations of flashing flow in channel were presented. Since the 
proposed mathematical model contains several phenomenological coefficients, a parametric analysis was 
performed in order to determine their value and the influence on solutions. For the sake of the analysis 
the classical benchmark experiment known as the Moby Dick was used. After fitting the solution of the 
model into the experimental measurements new calculations for other runs and other experiments were 
carried out. As a result of the analysis a good agreement of the model with reality was found, as well as 
its usefulness for the calculations of pressure and void fraction distributions in channels and for the 
determination of mass flow rate of two-phase systems. It constitutes a confirmation of the correctness 
of the proposed model as well as the theory on the basis of which it was built.

Keywords: capillarity, flashing flow, thermodynamic nonequilibrium
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—  parameter
—  affinity, cross-sectional area
—  matrix o f unsteadiness coefficients
—  body force vector
—  frequency o f molecules collision
—  matrix o f nonuniformity coefficients
—  specific heat, speed (of sound, perturbations)
—  viscosity coefficients tensor
—  perimeter
—  algebraic sources vector
—  thermal diffusivity
—  diameter
—  deformation rate tensor, matrix o f differential sources
—  matrix o f differential sources
—  specific free energy (Helmholtz potential), friction factor, 

function, frequency
—  force, total free energy
—  matrix o f differential sources
—  specific free enthalpy (Gibbs potential), gravitational acceleration
—  mass velocity (mass flux)
—  matrix
—  specific enthalpy
—  variable
—  unit tensor
—  nucleation intensity
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k —  mechanical coefficient o f  capillarity, wave number 
/ —  coefficient
L —  length
L —  tensor
n —  natural number, number
N —  number, population
0  —  order
p  —  pressure
P —  pressure tensor
q —• heat flux density
Q —  heat flux
r —  radius, radial co-ordinate
5 —  specific entropy
S —  dummy variable o f integration, total entropy
t —  time
T —  temperature
T —  stress tensor
u —  specific internal energy
U —- total internal energy
v —  specific volume
V —  total volume
w —  velocity
W —  work
x —  dryness fraction, order parameter
x —  equilibrium dryness fraction
y  —  mass fraction o f interfaces
z —- co-ordinate

Greek symbols
a  —  void fraction
P —  constant, linear relaxation time
X —  angle o f channel inclination
5 —  increase
<j> —  multiplier (two-phase, heterogeneity, pressure)
y —  non-linear relaxation time
r| —  dynamic viscosity (first viscosity, molecular viscosity), coefficient
k —  energetistic coefficient o f capillarity
X —  thermal conductivity
p —  chemical potential
0 —  relaxation time
p —  density
a  —  surface tension
a  —  state vector
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T — parameter, friction force
(0 — frequency

$ — interface thickness
9 — wetting angle
c — second viscosity (volumetric viscosity)
A — determinant, jump, difference
r — generation rate, source

I — decompression rate

Indices
b — bubble
B — bulk
c — critical
cal — calculated
d — droplet
e — equilibrium
exp — experimental
ext — external
f l — flashing
h — homogeneous, at constant enthalpy
hyd — hydraulic
het — heterogeneous
horn — homogeneous
imp — impossible
in — inlet
int — interfacial, surface
k — capillary
liq — liquid
Iv — phase change
n — normal
ns — nucleation site
P — at constant pressure
ph — phase
pos — possible
r — reduced
s — slug
sat — saturation
St — static
sup — superheating
t — tangential
TP — two-phase
V — viscous
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vap — vapour
w — wall
x — at constant dryness fraction
2 — hollow
0 - initial

1. Introduction
Water is a substance which occurs most commonly in nature and can exist in 

different states of aggregation. The change o f  state takes place through a phase 
transition, when the packing and the structure o f  H20  molecules changes. Phase 
transformations taking place in water are a subject o f our everyday experience. 
They happen spontaneously or are initiated by a man in a various kinds o f  machines 
and devices. In both cases the mechanism o f phase transition is the same, just as 
thermal effects accompanying the process.

For study and application reasons a particularly interesting flow o f  water is the 
one accompanied by evaporation in adiabatic conditions, the so-called flashing. 
In this case we deal with a phenomenon in which, without thermal influence on the 
flow of liquid, conditions causing phase transition arise within the fluid. The factor 
initiating evaporation is adiabatic throttling accompanying the flow. The process 
of vapour generation is, in this case, spontaneous since in two-phase flow 
an increased pressure drcp is observed, a factor which generates water 
superheating -  a necessary condition for vaporisation.

The occurrence, due to flashing, o f the two-phase flow results in a great 
complication of the physical situation. First, the process o f evaporation proceeds in 

the conditions of  thermodynamic nonequilibrium, and therefore a nonequilibrium 
description must be applied. The course o f the process greatly influences the flow  

situation, which depends on the scale o f nonequilibrium, and vice versa. Secondly, 
a two-phase mixture is not a simple sum o f two homogeneous phases since 
interfacial areas -  material regions o f different physical properties and strong 
gradients o f dens'fy, stresses, etc. -  additionally appear. Within these interfaces 
nonequilibrium processes o f mass, momentum and energy transfer take place due to 
these gradients. The intensity o f the transfer processes depends on a configuration 
of interfaces, that is on the stmcture o f the flow. The interfacial regions are also 
strongly turbub'zed and exhibit anisotropy o f physical properties, which certainly 
influences the properties o f two-phase systems. Thirdly, in a two-phase water- 
vapour flow completely new phenomena, not observed in single-phase flows, may 
occur, such as pseudocr: duality, dispersed shock waves, pressure drop in a diverging 
channel in subcrit'cal conditions. Any correct mathematical model should take into 
account the mentioned above properties o f flashing flow and exactly describe the 
phenomena taking place in such flows. It can be achieved on the basis o f the 
analysis o f experimental data and the processes taking place in microscale -  within 
interfacial regions and their surroundings.
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2. Physics of flashing

2.1. Characteristic o f  the phenomenon
The phenomenon o f flashing consists in rapid evaporation o f a liquid in 

consequence o f pressure drop below the saturation pressure corresponding to the 
current temperature o f the liquid [1], Therefore, it is a stress induced phase 
transition brought about by the mechanism o f local tension o f the fluid. Since the 
rapid pressure decrease is usually not accompanied by heat exchange with the 
surroundings, thus flashing can be treated as an adiabatic expansion o f a fluid 
caused by decompression or outflow. The transformation o f  water into steam is 
accompanied by a change in specific volume (latent deformation) and in specific 
enthalpy (latent heat), and that is why flashing is rated among first order phase 
transitions.

Flashing water flows have been known for more than a hundred years. First 
experimental studies were carried out in the 19th century by Sauvage [2], while at the 
beginning o f the present century by Rateau [3], Bottomley [4], Benjamin and Miller 
[5, 6] and Burnell [7]. At present, numerous examples o f  practical realisation o f  
flashing flows can be found in industrial equipment and installations. These flows 
occur, among other things, in power industry, chemical engineering and refrigeration 
technology, both during normal operation o f a device, when decompression 
is geometrically controlled, and in emergency situations, where depressurisation is 
uncontrolled. Flashing can occur in channels o f constant cross-section, like in pipes, 
in regions o f variable geometry, like in valves, or in pipeline breaks. During 
a hypothetical loss-of-coolant accident (LOCA) in a nuclear reactor a two-phase flow  
occurs in the place o f break as a result o f  flashing. Such a type o f situation is 
pictorially illustrated in Figure 2.1. A two-phase flow can also occur during normal 
operation o f capillary tubes, reducers, measuring orifices and nozzles serving for the 
minimisation o f flow resistance used as connections o f pipelines o f different diameters.

The most important feature o f flashing is the existence o f thermodynamic 
nonequilibrium in the fluid. This fact is experimentally confirmed and presents 
the largest difficulty in modelling since it requires the application o f the laws 
o f thermodynamics o f nonequilibrium processes. The thermodynamic nonequilibrium 
results from a dynamic character o f phase transition, which decelerates evaporation 
and causes the entry o f the liquid into the region o f metastable [8] or even 
unstable equilibrium. In single-phase flow it manifests itself in liquid superheating 
T = T, -  T (p,.), while in two-phase flow additionally in smaller amount of 
vapour compared with the appropriate amount in equilibrium state. For example, 
motionless water subjected to ambient pressure can exist in superheated state 
reaching 300°C. It comes from the fact that the nucleation o f a new phase in first 
order phase transitions requires overcoming a certain energetic barrier. In practice, 
these barriers are often reduced due to the existence o f ready nuclei o f  a new phase 
in the form o f impurities, inclusions, ions, etc. Then, the required superheating is 
smaller and the process o f nucleation is earlier initiated.
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Figure 2.1. Flashing in a pipe

Not all bubbles created as a result o f  nucleation are stable and can grow. From 
thermodynamic considerations follows [9] that liquid superheating is necessary to 
satisfy the condition o f equilibiium between the liquid and the arising vapour bubble. 
Water does not begin to evaporate at the boiling po;nt corresponding to the equality 
of external pressure and the saturated vapour pressure, but at somewhat lower 
pressure which results from the initially small dimensions o f  the vapour bubble. It 
means that at a given temperature and pressure o f water only bubbles o f a given 
radius r can exist in thermodynamic equilibrium. For the vapour bubbles o f radius 
grater than critical the external pressure is too low and they try to increase it by 
absorbing water, which next makes them even greater. However, for the bubbles 
smaller than critical the external pressure is too high and because o f  this they 
condense and become smaller and smaller, and eventually disappear. As a result o f  
this, as the dimension o f all bubbles is not equal and equal to critical size (which 
practically ;s impossible), the average rad’us o f the vapour bubbles will increase, 
which will bring about global evaporation o f the liquid and pressure increase. The 
process is self-sustaining and the growth o f vapour bubbles and their coalescence 
will cause the creation o f uniform bulk o f vapour o f  the pressure equal to the 
equilibrium pressure o f  the liquid water. The critical radius decreases along with the 
increase o f superheating and because o f this the existence o f bubbles o f greater and 
greater radius is more probable. When the external pressure becomes so low that 
the critical radius is in the order o f magnitude o f the molecule radius, the existence 
of greater bubbles becomes certain by reason o f random collisions o f molecules.

2.2. Physical model o f  flashing flow
A correct description o f flashing flow in a channel requires inclusion in the 

model the properties o f real fluids. Owing to a large degree o f  complication o f the 
phenomena taking place in such flows there arises a necessity o f  simultaneous
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modelling o f several thermodynamic and hydrodynamic processes that control the 
flow and become especially important in critical conditions. The most important o f  
them are [17]:

• flashing o f superheated liquid;

• the relation between void fraction a  and dryness fraction x;

• local pressure losses caused by a rapid change of geometry;

• pressure drop brought about by acceleration and wall fri etion;

• heat exchange with the surroundings.
Thus, the crucial role is played by a correct descrip .ion o f the processes o f  

mass, momentum and energy exchange between individual phases and interactions 
with the surroundings. The significance o f transport processes modelling was 
emphasised by Boure [18], in whose opinion the development o f the theory o f  
two-phase flows depends on the investigations on the phenomena governing the 
interfacial forces as well as the rate o f heat and mass transfer. The latter problem .s 
neglected in equilibrium models that assume infinitely fast interfacial heat and mass 
transfer and do not require additional theoretical models for the description o f these 
processes. As practice shows [19], the modelling o f transfer processes is extremely 
crucial in the description o f water-steam flows in long pipes and nozzles (LID > 40) 
since both the rate o f steam generativin and frict.onal losses determine the creation 
o f choked flow.

Equilibrium models do not allow even a qualitative descr  ̂ ion o f flashing water 
flows [20], It results from the existence o f the lack o f thermodynamic equilibrium in 
such flows, which was confirmed in many experiments. It turns out that in real flows 
thermodynamic nonequilibrium between phases always exists, only its degree and 
time o f existence in a flow varie. In the non-steady state experiments o f  Edwards 
and O ’Brien [21], Gallagher [22], Zaker and Wiedermann [23], Fauske [24] and 
Sozzi and Sutherland [25] the time o f duration o f nonequilibrium states did not 
exceed 1 ms, but in Lienhard, A'amgir and Trela [14] and Bartak [26] the time o f  
duration o f nonequilibrium pressure ranged from several to a few dozen o f  
milliseconds. As far as steady-state flows are concerned, the recorded water 
superheatings in flashing inception T , being a measure o f thermal nonequilibrium, 
ranged from 2-E3°C in the experiments o f  Reocreux [27] and Rousseau [28] to 5°C 
in the Jones [19] measurements. At lower pressures it gives local differences 
between the current pressure and the saturation pressure corresponding to the 
temperature o f water in the order o f a few dozen o f k-lopascals and significant 
displacement o f the point o f flashing inception downstream in comparison with 
equilibrium phase change. The results o f  such an inertial course o f flashing are even 
qualitatively different distributions o f fluid-flow and thermodynamic parameters 
measured in experiments and resulting from equilibrium theories. Examples o f  
pressure distributions and the corresponding void fraction profiles in nonequilibrium
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Figure 2.2. Example o f  pressure and voidfraction distributions in the Reocreux [27] pipe
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Figure 2.3. Example o f pressure and voidfraction distributions in the Jones [19] nozzle

flashing flows recorded by Reocreux [27] and Jones [19] are presented in Figures 
2.2 and 2.3. They illustrate a delay in flashing inception and the existence o f 
metastable flow both in the pipe (Figure 2.2) and in the nozzle (Figure 2.3)

Apart from thermal nonequilibrium in one-component two-phase flows 
mechanical nonequilibrium also exists, which is indicated by a difference in velocities 
of individual phases [29], The value o f slip ratio is the largest in areas o f  the 
generation o f vapour bubbles which are, as experimental studies show [19, 27, 28], 
generated on the channel walls and at the instant o f nucleation have zero velocity. 
As the liquid velocity increases, also the vapour velocity does and at near-critical 
velocities the slip ratio approaches unity. Henry [30, 31] showed that in critical one- 
component flows at low dryness fraction x<  0.01 the value o f slip ratio should be 
near one. Also Lackme [20] found that in choked flashing flow the value o f dryness 
fraction is small and visual observat-ons o f the flow mdicate its homogeneous
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Figure 2.4. Physical model o f flashing flow based on the experimental measurements o f Reocreux [27]

structure at which it is difficult to find large velocity differences. They are in the 
order o f  0.1+1 m/s, which, in the Nigmatulin and Soplenkov [32] opinion, has little 
importance at typical liquid velocities 10+100 m/s. That is why in near-critical flows 
with large velocities the neglect o f relative velocity and the assumption on the lack 
o f slip are justified, and the system can be treated as a homogeneous mixture in 
nonequilibrium state.

Considering adiabatic internal flows with large velocities in channels o f slowly 
varying axisymmetric geometry, the influence o f  heat exchange with the 
surroundings and local pressure iosses caused by a rapid change o f geometry are 
neglected. In such flows the predominant phenomenon is nonequilibrium evaporation 
o f a liquid, which is a result o f a delay in water-steam phase transition and the finite 
rate o f interfacial heat and mass transfer. Initially subcooled or saturated water is 
decompressed during the flow (Figure 2.4). Pressure drop in a vertical canal is 
brought about by friction (molecular and turbulent viscosity), gravitation force and 
acceleration. As a result o f  the losses the static pressure drops below the saturation 
pressure calculated for the inlet temperature o f water 7] and at the point where the 
pressure reaches pfl the water starts to evaporate. The two-phase flashing flow is 
characterised by an increased pressure gradient and increase o f void fraction. These 
quantities are macroscopic characteristics o f two-phase flow and can be easily 
measured in experiment.

3. Gradient description of interfacial properties

3.1. Structure and properties o f  interfacial areas

3.1.1. Characteristics of  an interfacial surface

A two-phase fluid as a mixture o f liquid, vapour and dividing interfaces is, in 
fact, a heterogeneous system. Its physical properties are determined not only by the
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properties o f the component phases but also by the properties o f the interfacial 
areas. The dividing surfaces can exist in various geometrical configurations which 
determine the topological structure o f two-phase systems as well as the division o f  
two-phase flows into bubbly, slug, chum, annular and droplet. In each case, the 
properties and dynamics o f the two-phase system will be strongly dependent on the 
existing internal structure o f the mixture. Also, the interfacial area possesses 
distinctive physical properties and its own dynamics but usually interactions with the 
surrounding homogeneous phases have a crucial influence on the behaviour o f  this 
region. This interfacial surface being formed under the influence o f  homogeneous 
phases simultaneously affects the state o f the phases, behaves actively in relation to 
them and affects the formation o f the neighbouring phases [80],

The concept o f a dividing surface was introduced for the first time by Gibbs [81] 
in 1878. Considering a one-component two-phase system he treated the interfacial 
area as a physical interface which is characterised by a directed force o f surface 
tension connected with pressure. The interfacial region is distinguished by the 
anisotropy o f pressure caused by the nonuniformity o f  the interfacial region along its 
width. Physically, by a mathematical interface one should understand a three- 
dimensional material origination whose two dimensions are significantly greater than 
the third one -  thickness. The thickness o f the interfacial region is estimated at 
several molecular diameters and increases as approaching the critical point o f the 
substance.

The behaviour o f an interface is usually presented as analogous to the 
behaviour o f an elastic membrane. But such a description neglects some significant 
physical differences which are based on the fact that a stretched interface increases 
its mass by introducing additional molecules from homogeneous regions at constant 
surface tension, whereas a stretched membrane conserves its mass and shows an 
increase o f internal stress [82],

A stable existence o f an interface is possible only when the thermodynamic 
potential o f its creation assumes a positive value [38]. If its value were negative or 
equal zero, accidental fluctuations could spread the interfacial layer within the fluid, 
finally leading to a complete dispersion o f one phase within another.

It should also be realised that this thin interfacial region is strongly turbulised 
[38], In thermodynamic equilibrium between liquid and vapour, within the transitional 
zone a two-way traffic o f molecules takes place -  the molecules hit and condense 
on the interface from the vapour side and evaporate from the surface to the vapour 
phase. According to Adamson [38], for a saturated vapour at room temperature 
from each squared centimetre o f water about 1 .2-1022 molecules per second arrive 
and go away. Through a surface equal to 10 A 2 corresponding to the surface area o f  
a single molecule o f water, 1.2 • 107 molecules/s pass which gives deposition time of 
an individual molecule on the interface o f the order o f tenth o f microsecond. In such 
a situation, also the exchange o f molecules between the interfacial region and the 
adjacent liquid layers takes place. The coefficient o f diffusivity o f most liquids at 
room temperature is o f the order o f 10-5 cm2/s. A molecule penetrates liquid on the
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Figure 3.1. Pictorial character o f variations o f density (a) and its gradient (b) crosswise a surface
dividing liquid and vapour

depth o f 10 nm already during 10'6 s. From the above data it follows that an 
equilibrium interface is on molecular level at a state o f strong agitation and 
movement o f single molecules penetrating the fluid from both sides o f the interface. 
Average density represented on macroscopic level by the product o f the mass o f  
a molecule and their concentration [33] varies continuously from the density o f the 
liquid to the density o f the vapour. The intensity o f the density variation is not 
constant along the thickness o f  the interface and, as it turns out, is the largest in the 
middle o f the interfacial zone. Pictorial character o f the variations o f density and its 
gradient on crossing the interface dividing liquid and gas is shown in Figure 3.1.

A continuous variation o f density o f a two-phase liquid-vapour mixture is a result 
o f variable distribution o f fluid particles within the transitional zone. In a state o f  
mechanical equilibrium intermolecular forces (van der Waals forces) determine 
spatial distribution o f particles. When two molecules are sufficiently close to each 
other they interact via repulsive forces. On greater distances we deal only with 
attraction forces whose values smaller than those o f repulsion. In a homogeneous 
phase o f  constant density the field o f forces exerted by the surrounding molecules is 
symmetrical and the resultant force is equal zero. For particles situated within the 
interfacial region the resultant intermolecular force should also be zero. Otherwise, 
such a particle will be moved to a position in which this resultant force is equal to 
zero or will leave the liquid, which means evaporation. Evaporation is possible only 
for particles o f the highest level o f energy [83], Thus, the structure o f the transitional 
zone is such that interfacial distances vary continuously perpendicularly to this zone 
from the values in the homogeneous liquid phase to the values characteristic for the 
vapour. Variable distances between the molecules express, o f  course, their variable 
spatial packing manifesting itself by a variable concentration.

As it has been mentioned above, the increase o f the area o f an interface 
requires a displacement o f some number o f  particles from the interior o f  the 
homogeneous phase to the interfacial region. Experience shows that this process 
requires some work resulting from the necessity o f applying a force to compensate
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the forces o f molecular interactions. It turns out that for a given fluid the isothermal 
and reversible process o f a unit increase o f the interface area requires always the 
same amount o f work. A macroscopic consequence o f the existence o f the 
intermolecular forces within the interfacial area is surface tension. It expresses a 
force exerted at all points o f the interface, acting at the plane o f  the interfacial 
surface and directed in all the directions tangent to the surface. The value o f  this 
force for a unit length constitutes the mechanical definition o f surface tension:

dF 
a  = — .

dz
(3.1)

From an energetic point o f view the surface tension can be defined as the amount o f  
work required to increase the interfacial surface by a unit area:

ct =
dW
dA-, (3.2)

Hence, systems showing the existence o f surface tension tend to decrease their 
surface, which is a region richer in energy, realising in this way a natural tendency o f  
energy minimisation. A characteristic feature o f surface tension is its independence 
of surface area A.nt and strong dependence on temperature T.

3.1.2. State of stress within an interfacial area

In a nondeformed system in which statistical dynamic equilibrium and the 
corresponding intermolecular structure were established, internal stresses do not 
exist [84], The forces o f molecular interactions are in mutual equilibrium 
appropriately to internal dynamic equilibrium.

The matter looks differently in a deformed system. In such a system, the internal 
structure corresponding to dynamic equilibrium is disturbed and as a result o f  this 
internal stresses caused by the intermolecular forces o f very short range appear. 
These stresses manifest themselves in forces acting on arbitrary planes drawn in the 
defonned system and depend on spatial orientation o f these planes as well as on 
their location. In the mechanics o f continuous media the stress tensor T being 
a tensorial field quantity is used to describe stresses in a deformed system. Instead 
of the stress tensor, the so-called pressure tensor P is often used, especially in 
hydrodynamics. It is defined in the following way [33]:

P = - T . (3.3)

In general, the pressure tensor can be decomposed into two additive parts [76]:

P = P e + P \  (3.4)

The former part Pe is the equilibrium stress tensor and depends on the state o f  
the system only. The components o f this tensor express reversible thermodynamic 
pressure, that is a quantity defined in equilibrium. The latter part o f  the pressure 
tensor Pv is an irreversible part and depends on the rate o f change o f state as well



226 M. Banaszkiewicz and J. Badur

as on the gradients o f the rate. Since viscous forces depend on the gradients thus 
this part is called the viscous pressure tensor. When a system is in equilibrium and 
does not exhibit any changes o f state, then the pressure tensor is reduced to the first 
part. As it was noticed by Bilicki [42] Equation (3.4) is a physical assumption and 
means that the total momentum o f a system is transported by two media. One is an 
elastic or compressible system, in which volumetric work is reversible, and the other 
is a dissipative system. A characteristic feature o f this additive decomposition is that 
either way o f momentum transport is independent o f each other, that is each o f them 
proceeds in such a way as if  the second medium was absent.

The structure o f the pressure tensor resulting from the character o f  
intermolecular forces is different in homogeneous phase and in interfacial region. 
This refers both to the equilibrium and viscous part o f the pressure tensor. Our 
discussion will be started with an analysis o f  the equilibrium stress P e. As it is 
known, in a homogeneous system at rest only normal stresses appear. For the sake 
o f symmetry o f molecular interactions, the normal stresses acting in particular 
directions are assumed to be equal to each other which results in isotropic 
distribution. The state o f  stress in the system is then described by means o f the 
isotropic pressure tensor [85]:

where p  is hydrostatic pressure equal as for absolute value and o f negative sign to 
normal elastic stresses. The hydrostatic pressure is here identified with a reversible 
thermodynamic pressure occurring in the equations o f state.

Within an interfacial region a different, anisotropic state o f stress exists. It can 
be presented best by considering a horizontal flat interface dividing liquid and vapour 
in gravitation field. Neglecting the influence o f gravity on the physical properties o f the 
phases, its effect can be reduced only to the location o f the vapour phase above the 
liquid. The condition o f hydrostatic equilibrium is then expressed by the relation [86]:

In the conditions o f the assumed planar geometry o f the system it is obvious to 
assume that the pressure tensor, like density and phase fraction, depends only on the 
co-ordinate z perpendicular to the fiat interfacial surface. Then, the condition (3.6) 
can be simplified and written in components:

The condition o f equilibrium (3.7) means that the pressures P e_x , P ‘ and Pe_ are 
constant and independent o f the co-ordinate z. Within homogeneous phases the 
pressure tensor Pe is isotropic and equal to pi.  Thus, from the condition o f

p  0 0

P e = 0 p  0

0 0 p
(3.5)

V - P e = 0 . (3.6)

(3.7)
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hydrostatic equilibrium it fellows that within flat interface the tangent pressures F ' 
and P‘ are equal zero and the normal pressure P‘z is equal to p. On the basis o f  the 
symmetry o f the pressure tensor in equilibrium one can further notice that 
P‘z = P‘z*  0, while tangent Isotropy o f the flat interface requires that 1 'eXI= P ‘vy and 
P‘ = I =0.  To recapitulate, one can say that flat interface has two principal 
pressures: normal P‘ = P ezz and transverse P‘ = P‘x, and does not exhibit tangent 
pressures. The normal pressure Pen is constant and equal to the hydrostatic pressure 
of uniform phases, but the transverse pressure P ‘ varies with the co-ordinate z and 
becomes equal to the normal pressure within the uniform phases. The pressure 
tensor is thus axisymmetric tensor o f  second order and according to tensor calculus 
has two independent components [87]

The origins o f pressure anisotropy within an interfacial region are 
intermolecular forces since the kinetic part o f the pressure tensor is isotropic [86], 
The intermolecular forces strongly depend on the density o f the fluid, that is on the 
molecular level on the concentration o f particles. Since the number o f molecules 
interacting with a cons'dered reference molecule is different in different directions, 
thus the force o f  interactions in the direction normal to the interface will be different 
from that acting in the direction transverse to the nterface. Thus, the pressures 
exerted in these two directions must be different.

At this point a third definition o f surface tension can be quoted. Since the 
transverse pressure P ‘ within the interfacial region is different from that in the 
uniform phase where as it is known P‘= P ‘, also the force acting in the transverse 
direction will vary and the reason o f this variation is just the surface tension. The 
exact definition o f the surface tension is given by the formula:

Integration o f the pressure difference is extended from minus infinity to plus infinity 
since outside the mterfai ial region the difference is zero and does not contribute to 
the surface tension. As it is seen from relation (3.8) the surface tension a  can be 
interpreted as an integral o f the excess o f pressure exerted crosswise the interfacial 
area in relation to the pressure acting over the area. The value o f this pressure 
excess is, o f  course, a function o f po tion, and, as it turns out, at some point attains 
a maximum. According to Goodrich [87], for a typical value o f the surface tension 
a  = 0.05J/m 2 and the thickness o f  an interface 5 • 10‘9 m the pressure difference 
reaches 10 MPa. Similar differences between normal and transverse pressures are 
recorded by Carey, Scriven and Davis [88], Assuming the value o f the surface 
tension equal a  = 0.02 N/m and the thickness o f an interface 2 • 10‘9 m they obtained 
the pressure excess equal to 10 MPa. For low normal pressures ;n the order o f  1 bar 
it results in negative transverse pressure about -1 0  MPa. From an experimentally 
proved fact that the thickness o f an interface at low pressures and high surface 
tensions is o f  the order o f tens or hundreds o f angstroms, Davis and Scriven [86]

(3.8)
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draw a very Important conclusion. It tells that within a part o f  the interfacial region 
the transverse pressure must be negative. There can exist regions o f tension 
P e> P e, as well as those o f compression P < P et .

Generalising the analysis concerning the flat interface into arbitrary curved 
interfaces one should say that neither normal nor transverse component o f  the 
pressure tensor is constant. Apart from this, the transverse components are not 
equal to each other and despite the lack o f movement tangent (shearing) pressures 
exist.

Having the complete knowledge o f the state o f  stresses within static interface 
we can proceed to the analy sis o f  a moving system containing dividing surfaces. In 
such a dynamic system, apart from reversible elastic stresses, some additional 
irreversible stresses connected with viscous forces appear. As it was mentioned 
above, these stresses depend on the rate o f  change o f the state o f  the system and 
are described by viscous part o f  the pressure tensor P v. According to the Newton 
hypothesis the viscous stresses are a linear function o f  deformation rate and for 
most fluids it is a sufficiently precise approximation [33]. In this connection we can 
write:

P v - c D  , (3.9)

where c is a fourth older tensor whose components are the coefficients o f  viscosity,

while D = — (V @ :v +  W'(EIV ) stands for deformation rate tensor. Within an

uniform phase the tensor o f  viscosity coefficients is isotropic which results in the 
fact that as a fourth order tensor it has two independent components (Lame 
coefficients). In hydrodynamics they are known as the coefficients o f first and 
second viscosity. On the basis o f the anisotropy o f  a uniform system we can writr;

3

(3.10)

$ =  2t]Dg , for i * j . (3.11)

The former relation is an expression for viscous normal (main) stresses, wVle the 
latter describes viscous tangent (shear) stresses. The coefficient o f first viscosity 
(molecular viscosity) -s denoted here by r], while the coefficient o f  second viscosity 
(volumetric viscosity) -  by § Expressions (3.10) and (3.11) are constitutive equations 
for isotropic Newtonian fluids.

Within an interfacial region the properties o f the fluid are no longer isotropic 
According to the theory o f Goodrich [87] the tensor o f viscosity coefficients is 
axisymmetric and possesses at most five independent components. For such a 
system one postulates the following components o f viscous pressure tensor [87]:

(3.12)
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^ ; = c o „ + ( c + 2 i i X + ( ; f i

n': = y j „ + y 3 JT+ f e  +  2r,)D„

(3.13)

(3.14)

Going from the interfacial area to the region occupied by a uniform system the 
pressures given be relations (3.12-^3.15) converge to the values determined by 
(3.10 fc 3.11). Five coefficients o f viscosity C,, C,', rj , rj' and r|" describing transport 
properties o f the axisymmetric interfacial region reach the limiting values o f two 
coefficients o f viscosity o f uniform phases C, and rp Physically, this means that m 
some directions there appear some excesses o f viscous stresses as compared to the 
stresses acting :n a uniform isotropic system. Thus, not only static (hydrostatic 
pressure) but also dynamic (viscosity) properties o f  the system exhibit anisotropy 
within the regions occupied by interfacial surfaces. These surfaces are 
characterised in some directions by some excess quantities whose value determines 
the intensity o f anisotropy. The properties o f a heterogeneous fluid do not vary 
discontinuously but in microscale exhibit a continuous variation.

3.2. Mechanical constitutive equation o f a two-phase system
Now we proceed to phenomenological description o f  a two-phase system  

containing material mterfacial areas. Our considerations will be carried out in terms 
of homogeneous model in which the properties o f internally homogeneous medium 
are postulated for a heterogeneous two-phase system. These properties are a kind 
of averages o f the properties o f the component phases, and according to the author 
from definition should take into consideration also the properties o f  interfacial 
regions. Such a methodology o f thermodynanr,  description o f heterogeneous 
substances was proposed for the first tilde by Gibbs [81] who noticed that any 
extensive thermodynamic property describing a two-phase system should mclude, 
apart from the contribution o f homogeneous phases, also some excess coming from 
dividing surfaces. From a phenomenological point o f view, the descrip: on o f  
molecular interactions and the dynamics o f interfaces is possible after previous 
determination o f local properties o f the system and then trans bon on macroscopic 
level [35],

In order to obtain a constitutive equation describing stresses in a two-phase 
system with the inclusion o f capillary stresses, the second gradient theory can be 
used. It is a general theory allowing description o f capillary phenomena o f a two- 
phase mixture assuming a continuous variation o f thermodynamic parameters within 
the interfacial region. The bases o f the theory were created by Dutch scientists 
already in the 19th century. The first thermodynamic considerations were presented 
by van der Waals [89] who proposed to introduce to the Flelmholtz potential a term 
with density gradient modelling the energy o f interfacial areas. Proceeding similarly, 
Korteweg [90] proposed a constitutive equation for cap ’laiy stress tensor in which
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capillary stresses were described by density gradients. In both cases the density of 
the fluid plays a role o f an order parameter distinguishing two fluids and dividing 
surfaces, and the graments o f density result from nonlocal molecular interactions 
within the interfacial zone [91].

Considering a nonequu brium water-steam mixture we stated that the 
nonequilibrium dryness fraction x is the quantity which satisfies all the requirements 
imposed on internal variables. The nonequ'librium dryness fraction x expresses the 
actual fraction o f vapour phase in the two-phase mixture and fulfils the function of 
order parameter very well. In water its value is 0, in steam 1, while within the 
interfacial region it continuously varies from 0 to 1. The gradient o f  the dryness 
fraction in homogeneous phases is zero and varies within interfacial areas only.

From the performed above considerations we have already learnt that the 
state o f stresses in a nonuniform system depends not only on density at a given point 
but also on density n the nearest surroundings. In the case o f a water-steam mixture 
described with the help o f homogeneous model, the density varies as a result o f  the 
variation in vapour content expressed by the nonequilibrium dryness fraction x. In 
order to describe the nonlocal character o f stresses one should express them in a 
function o f the dryness fraction grad'ents. Having this in mind one can postulate a 
decomposition o f  the reversible stress tensor Te into a part corresponding to the 
stresses i i a uniform system Th and a part Tk describing stresses caused by internal 
nonuniformity o f the system which occurs within interfacial regions. The stresses in 
the uniform system without internal gradients are a function o f the dryness fraction 
f* =  7t ), while the capillary stresses additionally depend on its gradients
J*=7'*(x,Vx, W x ........V ...Vx). Thus, we can express the stress tensor as a sum
o f two tensorial functions o f second order [92]:

T  = T h (x)+ T k (x, Vx, V Vx,..., V • • • Vx). (3.16)

The dependence o f  stresses on dryness fraction describes in t! 'S case the action o f  
short-range molecular forces (repulsion), while the dependence on the gradients o f  
dryness fraction is related to the action o f long-range forces o f attraction between 
molecules. It is just the second part o f the stress tensor, that is a source o f the 
surface tens on.

Gradient representation o f the capillary stress tensor Tk is obtained by 
expanding the tensor Tc about a point at which all the gradients o f the dryness 
fraction vanish. Like Aifantis and Serrin [92] we limit the expansion to the third 
order gradients and obtain:

Te = T0 + 7] Vx + T2VVx + r 3Vx (8) Vx + T^VWx + T5 Vx ® Vx ® V x, (3.17)

where the coefficients T0,..., T$ are isotropic tensors depending on x, because they 
are determined by the properties o f the system without gradients [86], The 
coefficient as an isotropic tensor o f third order is identically equal zero, like the 
isotropic tensors o f fifth order f  and Ty Then, relation (3.17) can be simplified to:
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T ‘ = 7’0 + 7’2VVx + J 3Vx 0 V x . (3.18)

On the right-hand side o f Equation (3.18) we have a sum o f three linear tensorial 
functions to wh:ch one can use the follow' lg representation o f  tensorial function 
[93]:

f T  =  /0(tr7’) /  +  / , / ’ . (3.19)

As a result o f this we obtain the following expressions:

T0 = ~ p l ,  (3.20)

2"'2V V x =  /2V 2x /  + /3V V x , (3.21)

T3Vx 0  Vx =  /4 (V x)2 /  +  /5V x 0  V x , (3.22)

;n which p  is pressure, and the coefficients /2 ,.. .,  are. in general, functions o f the 
dryness fractionx. Inserting relations (3.20^-3.22) into formula (3.18) we obtain the 
final formula for the equiliuiium stress tensor o f the two-phase system with internal 
microstructure:

V  = - / ? /  +  /27 2x /  +  /3V V x +  /4(V x)2/  +  /5y x 0 V x .  (3.23)

The pressure p  denotes here pressure in a uniform system without internal 
microstructure inducing anisotropy and being characterised by the gradients o f the 
fluid properties. The contribution o f interfaces is represented by the gradient terms. 
The influence o f these additional stresses on the stress tensor is controlled by the 
four coefficients l2 ,.. .,  ly

One should draw attention to the fact that a nonuniform system described by 
the stress tensor (3.23) apart from the anisotropy o f  normal stresses exhibits also 
tangent (shear) stresses. These are all elastic stresses, that are reversible in 
thermodynamic sense. Their origin resides in cap’Uary forces. For capillary normal 
stresses we have:

fa  =
3 P>2r 3

' J E t H Z
s2 \

;= |

ox

&v J y

6
<32x
fe7

+ it
dx
dz.

while for capillary tangent stresses we obtain:

(3.24)

Tk = l —
i  3 dz,

dx_ 
d z ..

. dx dx
+ for ‘ ■OZ, OZ ■

(3.25)

Taking advantage o f the constitutive equation for the stress tensor (3.23) one 
can calculate the surface tension for a flat interface within which the dryness 
fraction varies along z. The main nonnal and transverse stresses are then given by 
the relations:
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TL ~ ~ P + ih + h + (U + h)dz
r dx
Kdz j

(3.26)

c = c = - p + / : ^ 4 + / ,
dx

\ d z  J

(3.27)

Making use o f the definition o f the surface tension given by relation (3.8) we can 
write:

•foo +00

° = J t e - n ) * . r J J
dz \ dz j

d z . (3.28)

Integrating by parts the first term in the integral we obtain:

+OCr (  j2 \. fir x , . dx
+ X ' +OC

r ' dl3 ( d x ]
2  \

[ »Nro

1 dz = —L— + —
j 3dz j dx dz

-0 0 V 7 K \  y y

f i f e . (3.29)

The first term on the right-hand side o f expression (3.29) is identically equal zero 
since the dryness fraction is constant in infinity. Thus, we can write:

-CC V

where the parameter k{ is defined as follows:

\ 2
f i f e ,

k - ^ - lK\— l5
dx

(3.30)

(3.31)

3.3. The thermodynamic equation o f state o f  a two-phase system
Now, we are going to discuss some thermodynamic aspects o f the motion o f  

a nonuniform two-phase system. In order to do this, a fundamental equation o f state 
o f the nonequilibrium water-steam mixture will be derived. Since the present work 
concerns flashing flows in which phase transition is induced by stress, thus from the 
possible fundamental equations the Helmholtz potential will be discussed. For such 
problems it is the most appropriate function since it is expressed in terms o f  
temperature and specific volume. In adiabatic flows o f water the temperature can be 
assumed constant, while the variation o f the specific volume (or pressure) causes that 
the system becomes metastable or unstable, which in effect leads to phase change.

As it was noticed by Gibbs [81], any extensive thermodynamic quantity 
describing a two-phase system should also include, apart from the contribution o f  
homogeneous phases, some excess coming from dividing surfaces. With reference 
to the Helmholtz potential it is postulated that the total free energy o f the system is 
a sum o f free energies o f the component phases and the free energy o f interfacial
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areas. Even though the energies o f  the homogeneous phases are proportional to the 
number of molecules o f a given phase and are a simple sum o f the energies o f single 
particles, this cannot be said about the energy o f interfaces. This energy is equal to 
the difference between the energy o f molecules being within the interfacial area and 
the energy which those molecules would have if  they were within a uniform phase 
[80], From classical thermodynamics it is known that energy o f molecules increases 
with temperature, whereas the surface energy decreases along with temperature 
and at the critical point vanishes to zero.

The contribution o f interfaciai energy is extremely difficult to model. It results from 
the fact that the internal energy o f an interfaciai region is not only a function o f surface 
entropy and surface stretching, but depends also on the state o f both phases, geometry 
of the surface and the velocity o f propagation .n the fluid [16]. Othei important factor 
on which the total interfaciai energy depends is the interfaciai area density.

In section 3.1 it was said that the reversible work required to increase the 
interfaciai surface by a unit area is equal to the surface tension. In a reversible 
process proceeding at constant temperature and spei ;fic volume, the change o f  
internal energy o f the system is given by the relauon [94],

dU  = dQm + dW,vv = TdS +  adAml. (3.32)

Hence, on the basis o f  definition, the change o f free energy o f  the system can be 
written as [94]

dF = -SdT+adA1nl, (3.33)

from which we obtain:

a  =
V

\

JT .V

(3.34)

Relation (3.34) defines the surface tension as free energy o f unit interfaciai surface. 
The total free energy o f the system is an integral from the unit energy

+ F . (T ,V ) ,  (3.35)

where F (T, F) is a constant o f integration and expresses the free energy o f bulk 
phases. For a two-phase water-steam mixture relation (3.35) can be written in 
a different form.

f ( t , v  , 4 „ ,  )=  o(T)A„„ + f , J  ( r ,  v,„ f t  t - ' . j & v j l  (3.36)
In such a way we obtained a relation for the total free energy o f  the two-phase 
system, given as a sum o f free energies o f homogeneous phases and interfaciai 
surfaces. While the contribution o f liquid and vapour is easy to calculate, 
determination o f the contribution o f the interfaciai free energy requires knowledge o f  
the area o f interfaciai surfaces. This quantity is not constant but varies along with 
the variation o f phase fraction and flow structure. Relating the total free energy o f
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the two-phase system to its mass we obtain the relation for the Helmholtz specific 
free energy in thermodynamic equilibrium:

f k t i  v> auu )=  ° (  T )ain,vinl + (l -  x ) f liq [t , vUq)+  xf,ap ( t , vvap ) , (3.37)

in which a./u [m2/m3] is the iriterfacial area density, v.ni [m3/kg] -  the specific volume 
o f interfaces, while T[-] -  the equil horium dryness fraction. The range o f application 
o f formula (3.37) ,'s limited to the conditions o f thermodynamic equilibrium since this 
formula was derived from the definif an o f surface tension -  a quantity calculated on 
the basis o f  reversible work o f the system

In order to derive a fundamental equation for the free energy o f  a nonuniform 
system n the conditions o f thermodynamic nonequilibrium we will take advantage o f  
the second gradient theory. In the classical thermodynamics o f nonequilibrium 
processes the definition o f the energy o f a system does not include contributions 
coming from the gradients o f specific extensive properties. For a uniform system 
without gradientsit does not matter at which point we calculate the energy o f the 
system. In a situation o f a nonur form filed, for example density, concentration, 
phase fraction, the local definition o f energy o f the system is extended by nonlocal 
interact ons resulting from the asymmetry o f intermolecular forces. According to the 
second gradient theory presented in the works o f van der Walls [89], Landau and 
Ginzburg [95] and Cahn and Hilliard [96] we will postulate that the specific free 
energy o f a two-phase system depends on the local value o f dryness fraction as well 
as on its value within the nearest surroundings. Therefore, the Helmholtz potential 
can be expressed as a sum o f two contributions, which are funefons o f dryness 
fraction and its gradients, respectively:

f  = f h{ T , v , x ) + f k( T , v , x , V x , V V x , . . . y - V x ) ,  (3.38)

where f h is specific free energy o f a uniform system o f temperature T, specific 
volume v and dryness fraction .v, w li.ie"fk denotes an additional contribution to free 
energy brought about by the nonuniformity o f the field o f dryness fraction. In the 
molecular theory o f fluid interfaces given by Bongiorno, Scriven and Davis [97] the 
homogeneous term describes short-range interact'-ns (repulsive forces), while the 
gradient term is responsible for long-range interactions (attractive forces). Since the 
presence o f an interface in a small volume o f averaging is connected to the 
occurrence o f the gradient V x ;n the direction normal to the interface, then one can 
assume that the spatial gradient o f .r is a vectorial measure reflecting energetic 
contribution o f mterfacial surfaces. We will expect that the greater the gradient o f  
dryness fraction is, the greater energy characterises the dividing surfaces. The 
scalar x is a measure o f the amount o f internal mrrostmeture contained in our fluid, 
whereas the spatial gradient o f  v describes capillary properties o f the system [16].

Gradient representation o f  the specific free energy can be obtained by 
expanding this function about a pc nt in which all the gradients o f the dryness 
fraction vanish. While doing this, it should be assumed that the dryness fraction and 
its gradient are mutually independent, and the free energy is a continuous function o f  
its parameters. Proceefng as in the case o f the stress tensor we obtain the relation:
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f  = L0 + L, Vx + / , 2V Vx + £ 3Vx ®  Vx + V V Vx + Z,5 V x ®  V x ®  V x , (3.39)

in which the coefficients L0,. . . ,LS are isotropic tensors dependent on T, v and x, 
since they are determined by the properties o f uniform and isotropic system. The 
coefficient L is a tensor o f zeroth order since energy is a scalar quantity, and it is 
equal to the specific free energy o f a homogeneous system:

L0 = f" (T ,v ,x ) .  (3.40)

The isotropic tensor o f  first order Lx is identically equal zero, like the isotropic 
tensors o f third order LA and Ly Relation (3.39) is then reduced to the following 
form:

f  = f h (T, V, x )+  L2V V x + L,Vx ®  V x . (3.41)

Since the coefficients L2 and L3 are isotropic tensors o f second order, thus they can 
be expressed as:

L = l kI1̂ 2 *2 1 ’ (3.42)

and

u* 11 (3.43)

The last two terms on the right-hand side o f relation (3.41), as contributions to 
free energy, are o f course scalars and in this connection must be represented by 
expressions independent o f the gradient direction. Based on this physical property o f  
energy we can simplify the last two terms in formula (3.41) and obtain:

f = f * +  i y 2x + /*(V x f  . (3.44)

A similar form o f  the specific free energy for two-component systems was obtained 
by Cahn and Hilliard [96], From relation (3.44) the following form o f the total free 
energy follows:

F = j  ( / "  + /* V 2x  + /* (V x)2 )pdV.  (3.45)
f

The integral from the second teim one can transform in the following way [96]:

f \
J(p /*V 2x W  = - J  p —F (V x)2 dV + J(p/* V x • n)dA , (3.46)
K dx J

ie assumption that on the boundary 
reduce the last term in relation (3.46) and obtain:

v v  y  y  a

and after the assumption that on the boundary o f the region Vx • n = 0, one can
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According to the theory o f order parameters the term describing the free energy of 
a homogeneous system is, in the surroundings o f equilibrium point, a quartic 
polynominal. In this connection we can write [16]:

On the basis o f (3.47) and (3.48) the specific free energy /  o f the nor.uniform 
system can be expressed in the following way:

where the coefficient controlling the contribution o f gradient energy is defined as 
follows:

The coefficient lk is always positive, which means that there exists some energetic 
price connected w'th the creat ion o f spatial nonuniformities o f a field [98].

5.4. Equilibrium conditions
General definition o f equilibrium tells us that in a state o f  thermodynamic 

equilibrium the considered system neither interacts with the surroundings nor admits 
any internal interactions between arbitrary subsystems [40]. With reference to a 
two-phase water-steam m xture, this definition includes the requirement of 
preservation o f the equilibrium state in each phase as well as the requirement of 
preservation o f  equilibrium between individual phases. A homogeneous phase is in 
equilibrium when the gradients o f intensive parameters o f  state causing temporal 
variation o f extensive parameters do not occur [40]. Physically, this means that all 
internal transport processes taking place in the fluid ceased. To achieve interfacial 
equilibrium it is necessary for the interfacial transport o f  mass, momentum and 
energy to vanish.

Equilibrium phase transition takes place in a homogeneous way if  the 
following conditions are satisfied [16]: •

• equality o f temperatures o f both phases TUq= T \

• equality o f pressures o f both phases p = p ;

• equality o f the Gibbs free enthalpies o f both phases g „  =  g  ■
In heterogeneous phase transition, when two phases divided by an interface of 
complex structure are considered, the occurrence o f capillary phenomena 
sigi..ficantly influences the equilibrium conditions [82], The influence is stronger at 
larger dispersion o f a new phase, that is in evaporation at smaller dimensions of  
vapour bubbles, faking into consideration the surface phenomena the conditions of  
thermodynamic equilibrium transform into, respectively [1( ]:

• difference o f internal energies o f both phases is equal to i itemal energy o f  
the interface u, -  u = u ;hq vap mr

(3.48)

(3.49)

(3.50)



Gradient Theory fo r  the Description o f Interfacial Phenomena in Flashing Water Flows 23 7

• difference o f  momentum fluxes o f  both phases in direction perpendicular to 
the interface is equal to momentum o f the interface PUq~Pvap-p~h

• difference o f chemical potentials o f both phases in direction perpendicular to 
the interface is equal to chemical poten ial o f the i, terface \iu — pi = \i.nr

Some examples o f the extension o f equilibrium conditions by capillary effects 
can be found in the works o f Gibbs [81] and Frenkel [99], For a spherical vapour 
bubble the condition o f mechanical equilibrium is expressed by the relation:

2ct
Pnq - P VaP = - — ’ (3.51)

while the condition o f phase equilibrium is given as [99]:

2 a
f-% ~P,aP = —  Km, • (3.52)

From relation (3.52) it follows that for equilibrium course o f mass transfer between 
water and steam which is created in the form o f bubbles, some difference o f  
chemical potentials o f both phases is necessary, and the chemical potential o f  the 
new phase must always be lower than that o f the parent phase. This latter limitation 
results from the condition o f thermodynamic stability since, as it is known, more 
stable is that phase which in given condemns has lower potential o f energy and by 
the generation o f the phase o f lower potential the system realises the law o f energy 
minimisation. In the conditions o f phase disequilibrium the difference in chemical 
potentials is larger than in equilibrium and is the driving force (affinity) o f mass 
exchange. For flashing, which proceeds in the conditions o f pressure drop, the 
chemical potentials o f  water and steam vary along with pressure but until the 
saturation conditions are not achieved more stable is the liquid phase. After 
exceeding the saturation pressure the chemical potential o f steair is lower than that 
of liquid water which in tL;s region is in metastable state and sooner or later will 
become transformed into steam.

Definition o f  affinity A as a drving force o f mass exchange can be obtained 
from the comparison o f the Gibbs equation written for a two-phase system [40],

du =
' du

, ds

\
ds +

)v,x

du
dv + ' du

Kdx

\
d x ,

Js,v
(3.53)

with the First and Second Law o f Thermodynamics written for reversible sprocesses 
[40]:

du = Tds -  pdv  -  Adx. 

As a result o f the comparison we obtain:

( d u \

ys,v

(3.54)

A = - (3.55)
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Equivalent definitions o f A as a function o f the remaining thermodynamic potentials 
can be obtained from the Gibbs equation after the application o f  the Legendere 
transformations:

A =
( d h '

KdXL

r < n

V  UA Jv.T V JpJ
(3.56)

thewhere h is specific enthalpy, / -  the Helmholtz specific free energy, while g 
Gibbs specific free enthalpy. In thermodynamic equilibrium we have:

A = 0 , (3.57)

and the equilibrium dryness fraction x is a function o f the remaining two independent 
parameters defining thermodynamic state o f the system:

x = x(s ,v )=  x(s, p ) =  x(v,T)= x(p ,T) . (3.58)

Now, we can identify the difference in chemical potentials o f  coexisting 
phases as a derivative o f the Helmholtz thermodynamic potential with respect to the 
dryness fraction x:

r df')
(3.59)A =

dx vap
fry

However, this definition does not take into account capillary phenomena and refers 
only to homogeneous systems without interfaces. The formula derived in the 
previous section for the Helmholtz free energy o f heterogeneous systems (3.49) 
contains a term with the gradient o f the dryness fraction. On this basis we extend 
the definition o f the thermodynamic affinity (3.59) onto nonuniform systems and 
obtain the expression [16]:

A = (3.60)
7>

where the Volterra variational derivative is defined in the following way [16]:

dx dx a v x
(3.61)

In phase equilibrium the thermodynamic affinity A is equal zero [100]. But it 
does not mean that the chemical potentials o f both phases are equal to each other. In 
the light o f definition (3.61) it is seen that their difference is equal to the chemical 
potential o f  the interface, which is represented by the gradient part. Since in the 
equilibrium state the amount o f vapour is equal to its equilibrium value, the 
equilibrium value o f the dryness fraction x can be determined from the condition of 
vanishing o f the thermodynamic affinity [101]:

A = =  0 . (3.62)
7>
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Figure 3.2. Dependence o f thermodynamic affinity on diyness fraction

Condition (3.62) physically means that at equilibrium point the free energy 
reaches minimum at fixed other generalised deformations. Pictorial character o f  
dependence o f the thermodynamic affinity on the dryness fraction in the vicinity o f  
equilibrium point is presented in Figure 3.2. At points where K l w e  deal with 
nonequili' rium evaporation, while at points where x > x nonequilibrium condensation 
occurs.

4. Homogeneous model of flashing flow

4.1. Assumptions o f  one-dimensional homogeneous model
In the homogeneous approach a nonequilibrium model o f two-phase flow  

consists o f balance equations formulated for a two-phase mixture and the balance 
equation for vapour mass [102]. The latter describes the nonequilibrium character o f  
evaporation in the flow and is postulated in the form o f  kinetic equation. The 
homogeneous approach assumes that the considered system is physically 
homogeneous and each element o f  the fluid volume contains a medium whose 
properties are a kind o f average o f the properties o f component fluids. The influence 
of real heterogeneous structure o f  the two-phase system is modelled in constitutive 
equations postulated for the mixture o f the two phases [103].

The most important assumptions taken in the proposed here one-dimensional 
homogeneous model are as follows [102]:

• velocity vector components perpendicular to the flow axis are neglected:

vc = vc, , =  0 ,
x y

vc. =vc;

• no slip between phases:
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• axial velocity gradients in directions perpendicular to the flow axis are 
omitted:

dx dy

• thermal parameters gradients in directions perpendicular to the flow axis are 
omitted:

dx ~ dy ~ ’

• heat conduction along the channel is negligible:

q: =0;

• pressure o f the liquid is equal to that o f the vapour:

Plu, = P vap = P i

• liquid is metastable:

T„q

• vapour is saturated:

K a p  =  K a p i p ) ’>

• flow is adiabatic:

The model proposed in this work describes two-phase turbulent flows in annular 
channels with constant or slowly varying cross-sectional area. A two-phase flow in 
an axisymmetric channel with annular cross-section is, in general, a two-dimensional 
problem [72]. A confirmation o f this is the possibility o f creation in the divergent 
section o f a nozzle the jet  structure [27] and the existence o f transverse profiles of 
void fraction [27, 31] and density [28], But, both single and two-phase flows can be 
accurately described by means o f one-dimensional balance equations closed by 
empirical constitutive relations. Nevertheless, nonuniform profiles o f void fraction 
and velocity can influence the comparisons o f one-dimensional models with 
experimental data [18]. For example, accelerational pressure drop is strongly



influenced by the existence o f transverse profiles o f void fraction and velocity. 
One-dimensional model o f a two-phase flow treating the water-steam mixture as 
a nonequilibrium homogeneous system is the simplest model taking into account 
thermodynamic noneqrih'brium between phases [47], accurately describes flashing 
flows in nozzles [104-107] and gives a possibility o f the modelling o f capillary 
phenomena. According to the classification given by Mikielewicz [103] it is 
thermomechanical model since it takes advantage o f  balance equation for mass, 
momentum and energy o f the mixture. Such models are used when thermal effects 
are coupled with mechanical ones [103].

4.2. One-dimensional balance equations
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4.2.1. Mass balance of  the mixture

The principle o f mass conservation tells that temporal change (substantial 
derivative) o f mass in a fluid volume is equal zero [33]. It allows to formulate 
a differential form o f the balance equahcn o f mass o f the two -phase mixture:

—  + rvV p + pV • tv = 0 ,
dt

from which one can obtain a conservative form:

d_
dt

(p )+V- (p tv)=0 .

(4.1)

(4.2)

This is the local formulation o f the conservative property o f  matter. 
A one-dimensional equation o f mass balance we obtain after integration and 
averaging o f Equation (4.2) according to the procedure presented by Bilicki [108], 
As a result we obtain:

A f  + f { A p w ) = 0 .  (4.3)
Dt OZ

Dependent variables appearing in this equation are quantities averaged over the 
cross-sectional o f the channel. Performing differentiation and dividing by A we 
obtain the final form o f one-dimensional balance equation for mass o f the mixture:

cp dp dw 
—  + w —  +  P —  =
dt dz dz

p w dA 
A dz

(4.4)

4.2.2. Momentum balance of  the mixture

From the principle o f momentum conservat^ n it is known that temporal change 
of momentum in an arbitrary flmd volume is equal to the sum o f  body forces acting 
on this volume, and surface forces acting on the fluid surface [33], On this basis one 
obtains a differential form o f momentum balance o f the two-phase mixture:
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( d

\

w
I T

\
-r w W =  p b + V - T , (4.5)

which, on the basis' o f  the equation o f mass balance (4.2), can be transformed to 
a conservative form:

^ - ( p w ) + V - ( p w ® w ) - V - r  =  p b . (4.6)
at

One dimensional equation o f momentum balance is obtained after integration and 
averaging o f Equation (4.6):

A g ( p w ) + ^ - ( A p v v 2) + A  ^  +  /?v) + C x  =  - A p g c o s x .  (4.7)
at dz dz

In this equation the body force was expressed by the product o f density p and 
gravitational acceleration g, p k denotes capillary pressure, p v -  viscous pressure, 
while x  -  inclination angle o f the channel. Shear stresses arising due to viscosi ty and 
capillarity forces are replaced by friction force x on the channel wall.

So far our analysis was resolved to geometrical simplifications, that is to the 
reduction o f the three-dimensional equation o f momentum balance (4.6) to the one
dimensional Equation (4.7). In one d'mensional models normal shear stresses 
expressed by the gradient o f velocity are usually neglected. Neglecting also the 
capillary shear stresses included in the friction force, Equation (4.7) can be written as.

dt
(pw )+ I 3 ( A p Wq + ^ + i l c -

A dz dz dz
p geos x _  tfp (4.8)

Taking into account equation o f  mass balance (4.3) we obtain the final form o f  
one-dimensional momentum balance

3w dw dp dpk
p —  + p w — +  +

dt dz dz dz
- p g  c o s x - x TP. (4.9)

4.2.3. Energy balance of  the mixture

The principle o f energy conservation says that temporal change o f  total energy 
in a flu’d volume is equal to the sum o f the power o f body forces, surface forces and 
the flux o f  energy supplied to the volume. From this the differential form o f  the 
equation o f  energy balance follows :

u +  ■
w 2 A

+ p wV u +
w.2 d

= p6 -w' + v - (rw )-v-q ' ,  (4.io)

from which, having taken into account the equation o f mass balance (4.2), the 
following conservative form follows:



Gradient Theory for the Description o f Interfacial Phenomena in Flashing Water Flows 243

dt
p W +

pw 2 A
+ v -

2 Aw
pw u + pw -  V • (Tw )+  V q -  pb ■ w . (4.11)

J
One-dimensional equation o f  total energy balance is obtained after integration and 
averaging o f Equation (4.11):

dt
pw +

pw 2 A f
+ ■

dz
Apw w +

w 2

JJ

+ —  (Aw (p  + p k + p v))-(A q)=-A pgw cosx.
(4.12)

dz

Neglecting, as in momentum balance, the viscous normal pressure p v and according 
to the model assumption the heat flux q, we obtain from Equation (4.12) the 
following relation:

dt
pw +

p w 2 \  3 (

\
+ -

dz

(
Apw u +  -

w..2 V\

V
+ -

) ) dz
{Aw(p + p k] ) - -Apgwcos%.  (4.13)

Taking into consideration the identically satisfied equations o f  mass balance (4.3) 
and momentum balance (4.8) we obtain a one-dimensional equation o f internal 
energy conservation:

Ap —  + A p w —  + ( p  +  p k)— (A w )=  Axtpw .
du

dt dz dz
(4.14)

Replacing internal energy by enthalpy we finally obtain equation o f  energy balance 
in the form o f one-dimensional equation o f enthalpy balance:

dh dh dp dp dpk dpk
p ----- 1- p w --------—- - , w --------— -  -  w —— = T „ w .
W dt F dz dt dz dt dz

(4.15)

4.2.4. Mass balance of  the vapour phase

The mass o f vapour phase in a unit volume can be expressed as a product px. 
Balancing this quantity in a control volume V and taking into account internal sources 
one obtains after transformations a differential equation o f  balance o f the vapour 
mass:

— (px)+ V • (pxw) = Tvap . (4.16)

Performing the procedure o f averaging we obtain a one-dimensional equation o f  
balance o f the vapour phase:
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from which we can eliminate the identically satisfied equation o f mass balance (4.3) 
and dividing by p we obtain:

dx dx
----- h W---
dt dz

(4.18)

4.3. Constitutive equations

4.3.1. The equation of  state

As it is known form the classical thermodynamics o f equilibrium processes 
(called by Truesdell thermostatics) the equation o f state constitutes a functional 
relationship between one dependent variable and n independent variables in a state 
o f thermodynamic equilibrium [109], In a case o f the fundamental equation o f  state 
for internal energy u we have the relation:

u = u(s,v), (4.19)

in which 5 and v denote equilibrium specific entropy and specific volume of 
a system, respectively. These two quantities completely determine the 
thermodynamic state o f the system and the knowledge o f explicit form o f the 
function o f internal energy (4.19) allows to determine uniquely all thermodynamic 
parameters o f the system [110].

Observation shows that systems with mtemal structure, as a water-steam 
mixture, possess an additional parameter (internal variable) entering the equation of 
state. For the water-steam mixture considered in this work, the dryness fraction x is 
such a parameter. However, there arises a question how to determine the properties 
of the two-phase system being in thermodynamic nonequilibrium?

An answer to this question can be found in internal variables theory, in which 
the so-called frozen equilibrium state corresponding to a given nonequilibrium state is 
defined [45], The corresponding equilibrium state is reached from the nonequilibrium 
state in adiabatic way at constant specific volume v and constant dryness fraction x 
preserving the same flow velocity w. It follows from this that internal energies of 
both states are equal to each other. On the basis o f  the rule o f local state [110] we 
know that intensive properties and entropy in a nonequilibrium state are the same as 
in the accompanying equilibrium state. Since in equilibrium the fundamental equation 
o f state exists, then it must be also satisfied in the nonequilibrium state. Thus, for our 
nonequilibrium water-steam system we have [111]:

u = u(s,v,x), (4.20)

where all the quantities appearing in this equation are nonequilibrium properties. 
Physically this means that in a nonequilibrium state an equation o f state exists, that is 
the same relationship between thermodynamic parameters like in equilibrium. 
Having in mind that our considerations concern a nonuniform system and we 
postulate the inclusion o f the dryness fraction gradients in the Helmholtz potential, 
the fundamental Equation (4.20) should be rather written in the following way:
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u = u(s,v,x,Vx).  (4.21)

From the balance equations o f our model it follows that a thermodynamic 
closure in the form o f  thermal equation o f state for the density p o f the two-phase 
mixture is required. As it is known, the density consists o f  densities o f  water, steam 
and interfacial surfaces. Therefore, the density o f the two-phase system can be 
expressed by the relation:

-  =  v =  xKap +  0 - x - y ) v , iq + yv inl > (4.22)
P

in which y  stands for the mass fraction o f interfacial areas.
According to the model assumption on thermodynamic equilibrium o f the vapour 

phase, we can write the thermal equation o f state for the vapour in the form:

Kap= K ap(p),  (4.23)

while for the superheated liquid we have the relation:

rV/i i=%(p>h/J> (4-24)

where the existence o f  an equation o f state for liquid in the metastable state was 
assumed. As it is seen from relation (4.24), to calculate specific volume o f the liquid 
we must know its pressure and enthalpy. The pressure, as a component o f  the state 
vector, is known from the balance equations, while the enthalpy o f water can be 
calculated from the caloric equation o f state o f the two-phase system:

h = xKaP + 0 y)huq + yK , • (4-25)
The caloric equation o f state o f the vapour in equilibrium takes the form:

Ka/fKap ip ) '  (4.26)

In two-phase flow theory, the mass o f interfacial regions is assumed to be negligible 
[35], In this connection we can write:

T ~ 0 ,  (4.27)

and calculate the enthalpy o f water on the basis o f  equation (4.25):

, _ h ~ XKaP(p)
(4.28)

Finally, the thermal equation o f state o f the nonequilibrium two-phase system 
assumes the following form:

^  =  xKap (p )+  0  -  U  K  (P’ /7> *))• (4.29)

It should be noticed that the capillary effects are not taken into consideration while 
calculating the thermodynamic properties o f the system. The enthalpy o f  interfacial
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surfaces, which, according to the theory presented in Chapter 3, should be described 
by the gradients o f the dryness fraction, is neglected. Also the mass o f  interfaces is 
neglected due to their microscopic size. Values o f the thermodynamic functions o f water 
and steam in saturation and metastable region are calculated on the basis o f steam tables 
worked out in the form o f numerical procedures by Kardas and Bilicki [112].

4.3.2. Volumetric source of  vapour mass

The process o f nonequilibrium vapour generation, being an irreversible 
thermodynamic process, can be described by making use o f the general rules of 
nonequilibrium thermodynamics. The thermodynamics o f nonequilibrium processes 
considers irreversible phenomena taking place in homogeneous systems and describes 
them by phenomenological equations relating generalised fluxes with generalised 
thermodynamic forces [41], Among such a class o f phenomena the process of 
relaxation o f  an order parameter describing the thermodynamic state o f a system can 
be numbered. The order parameter, entering the fundamental equation o f state, must 
be a measurable quantity but cannot be controlled and take part in external work of 
the system. For evaporation, the nonequilibrium dryness fraction is such a parameter 
since it meets all the requirements laid down to order parameters [42].

The balance equation o f vapour mass (4.18) is at the same time an evolution 
equation for the nonequilibrium dryness fraction x. The dryness fraction plays here a 
role o f an order parameter (internal variable) and due to the occurrence o f the 
source term on the right-hand side o f Equation (4.18) it is a non-conserved order 
parameter. Description o f the evolution o f this parameter requires an additional 
constitutive equation which gives an explicit form o f the source Tra . Some 
instructions on the construction o f such terms are provided by the internal variables 
theory [113], In this method, the kinetics o f the evolution o f an order parameter is 
dependent on the thermodynamic components o f the state vector and on generalised 
forces. Internal variables satisfy first order differential equations with respect to 
time, which can be written in the form [42]:

x -  f (T , v ,x ,V T ,V v ,V x , . . . ).  (4.30)

In various physical situations the general relationship (4.30) assumes the form of 
linear equation:

x = / ( T,v,x)A . (4.31)

In accordance with the presented theory the evolution equation for the 
nonequilibrium dryness fraction takes the form:

dx
J t

(4.32)

where p is density o f a two-phase mixture, and T -  volumetric rate o f vapour 
generation. Linear phenomenological equation for the rate o f vapour generation is 
given as [41]:
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r,■ap (4.33)

where A denotes thermodynamic affinity, and / is a phenomenological coefficient 
Hence Equation (4.32) assumes the form:

dr _  I A 
~dt~ p T ’

(4.34)

In the above equation the thermodynamic affinity A is this generalised force 
which drives the vapour generation. Physically, vapour production is a result o f  
interfacial mass exchange controlled by the difference in chemical potentials o f both 
phases. For this reason, the generalised thermodynamic force is equal to the 
difference in chemical potentials, and under definition (3.56) also to the derivative o f  
the Helmholtz free energy over the dryness fraction. Since in the present work the 
nonlocal definition o f the free energy is proposed, which is expressed with the help 
of the dryness fraction and its gradients, thus, consequently, one proposes 
a generalisation o f the definition o f the thennodynamic affinity:

A =
JT.v

where 8 /S.v is Volterra variational derivative [16]:

(4-35)

¥  = ¥ _ v ( j ¥ _ \
S.v dx v dVx y

(4.36)

Taking into account relation (4.35) we can write the source o f  vapour in the form o f  
the Ginzburg-Landau equation [114]:

yap
L ¥
T f ix ’

(4.37)

On the basis o f formula (4.36) and from the relation for the Helmholtz free energy 
derived in Section 3.3 we conclude that its derivative in the surroundings o f  an 
equilibrium point is a function o f the dryness fraction and its gradients, which can be 
generally expressed as follows:

¥  =
Sx

V 2x,

f l(x,x2, x \ . . . , x ' ' ) - V - f 2(vx , (V x y , (V x )3, . . . , ( V x ) \

(v2x)2,(v2x)3,...,(v2x)”,...vmx,(vmx)2,(vmx)3,...,(v"'x)n).
(4.38)

Here it was assumed, like in Section 3.3, that the dryness fraction and its gradient 
are independent variables. Expanding the function in the surroundings o the 
equilibrium pointx - x  we obtain:
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d f _ d f
A  = ^  =fix fix

f i" /

3 7

fix2

/  — \ fi3/( x - x j+
v.r v,r

+
fix" ( * - * /  + — —fix"

fix3 

( x -x ) " .

( x - x )2 + dlL
fix4

( x - x )3 + ...
v.T

(4.39)

v,r

In a state o f phase equilibrium the nonequif orium dryness fraction x attaines its 
equilibrium value x and the vapour generation is stopped. In this connection, the 
derivative o f  the Helmholtz potential over x must vanish. Since in expression (4.39) 
all the terms dependent on the difference x - x  are equal to zero, then the free term 
must also vanish. Moreover, owing to the fact that the Helmholtz potential is described 
by a fourth order polynominal, all the derivatives o f order higher than four are equal 
to zero and due to this all the terms in which these derivatives are factors vanish. 
One should also notice that all the terms appearing in expression (4.39) should depend 
on the sign o f the difference x - x ,  since for x -  x < 0  we have nonequilibrium 
evaporation and the amount o f vapour must increase ^vap> 0, while for x -  x > 0  
nonequilibrium condensation occurs and the amount o f vapour decreases P < 0  
Owing to this, in formula (4.39) only terms containing even powers o f the difference 
x - x  can occur. Taking into account the above considerations o f physical nature we 
can simplify formula (4.39) to the following form:

V
fix

fi2/

fix2
(x — X )+

v.T

1 L
fix4

( x - x ) 5 . (4.40)

Expanding similarly the function/ one obtains the relation-

f 2 =
j r
fiVx fiVx

. d2/ (V x-Vx) +
v.T

g3/
fi(Vx)3

(V x-Vx)2+ ...
v.T

+

+

+

+

e r ' f

fi(V xf

fi3/

(V x-V x)" -1---
v.T

f i v x
+

fi2/

,r fi(v2x )2

e{v2x )3

^ /

(v 2x - V 2x )2+ . . . + - ^ ^
i v 2x f

(V2x - V 2x)+

(v 2x - V 2x )"+ ...
v.T

fi(vmx j

d”+[f

(vmx -V "x )+ - &

v.T

fi(vmx)'+

fi(v"x)5

( V 'x -V 'x ) " ,

(v ^ x -V ^ x )2 + . . .
v.T

(4.41)

v.T



which, after performing the considerations given above, can be reduced to the 
following form:
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M  f f «
dVx «3(Vjcf

(V x -V x ). (4.42)
v,r

Inserting expressions (4.40) and (4.42) into formula (4.38) we fin '

8 / d 2f
8x dx

( x - x ) +
d Af

v,T
dx4

( x - x ) 3 + d 2f

v.T d i y x j
(V -V x - V - V x ) .  (4.43)

v.T

Inserting the above relation to the Ginzburg-Landau Equation (4.37) and taking into 
account the assumption o f one-dimensional flow, we obtain the searched formula for 
the volumetric vapour generation-

r  = -yap j i
/ r \ (  y*3 / —V? r \  5 2( x - x ) ^

ft {x ~ x ) + f  (Jt - x j - f n  \  2oz

where the following substitu. ons were done:

ft = dlL
dx" v.T

(4.44)

(4.45)

ft =
d4f
dx4

V .T

(4.46)

d 2f
8(Vxf v.T

(4.47)

On the basis o f  formula (4.44) the change o f the dryness fraction x  can be 
expressed by the following equation [115]:

r  Xvap -/v - x  ( x - x Y  < 3 2 ( x - x )  
----------- --------+  K -----------------

y dzz
(4.48)

where:
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(4.51)
PT

Equation (4.48) describes the source o f mass o f the vapour phase with the help of 
two relaxation terms with two relaxation times p and y, as well as the gradient term 
with capilla"ty coefficient k. Thus, we have strong (scalar) and weak (differential) 
interactions. The gradient term has its physical origir in nonuniformity o f the field of 
the dryness fraction within the interfacial region and models an energy excess 
connected with capillary interactions. This excess energy is modelled, on 
macroscopic level, with the help o f the derivative o f the dryness fraction along the 
flow, while, on n f croscopic level, its origin is the variation o f  the dryness fraction 
across the i lterfacial region. The capillarity coefficient k  controls the contribution of 
the gradient energy and on this basis we can conclude that it depends on the surface 
tension. From a mathematical point o f  view the gradient term results from the 
nonlocal definition o f the free energy o f the two-phase systen

4.3.3. Shear stresses

Experiments show that for any mass flow rate in a channel o f any geometry the 
frictional pressure drop in a two-phase mixture is larger than that in a single-phase 
flow o f the same mass flow rate [18]. It results from an increase o f the flow 
resistance due to the generation o f vapour bubbles on the channel walls.

In friction model we assume that shear stresses in a two-phase flow are a linear 
function o f stresses which would occur in a liquid flow with the same mass flow 
rate. This assumption can be written as follows [116]:

where a two-phase multiplier <)) is a local drag coefficient o f two-phase flow related 
with the increase o f the flow resistance due to the appearance o f vapour bubbles, 
xTP denotes shear stresses in tow-phase flow, while stands for wall shear 
stresses in the liq aid flow. It is classically assumed that the value o f these stresses is 
proportional to the kinetic energy o f the system and can be calculated from the 
following formula:

in which C denotes channel pe meter, /  -  the friction factor dependent on the 
Reynolds number, p -  liquid density, and wljq -  liquid velocity. Equation (4.53) 
defines the so-called volumetric friction force, and the multiplier CIA is a result o f  
averaging o f three-dimensional momentum equation. Taking advantage o f the 
assumption o f equal mass flow rates o f liqu id and liquid-vapour mixture we can write:

xTP — (bx/;</, (4.52)

(4.53)

p w = p Mw//?,

from which we obn ' l a formula for ‘..'quid velocity:

(4.54)



Gradient Theory for the Description o f Interfacial Phenomena in Flashing Water Flows 251

=
vvp
P  liq

(4.55)

Inserting the above relation into formula (4.53) we obtain a formula for the friction 
force in single-phase flow:

Xliq
± c  p V
2 A f  p,„ ‘

(4.56)

The friction factor / i s  calculated on the basis o f  the Blasius [117] formula derived 
for smooth pipes:

/ =  0.079 IReJ25, (4.57)

where Re, is the liquid Reynolds number. The two-phase flow multiplier $ is 
a function o f the flow structure and depends on the dryness fraction, density and 
viscosity o f the system. Its value can be calculated using the Beattie [11] theory 
according to the following formulae:

bubbly flow a  < 0.3:

1+x

Q 8

1+x
1 3-5pra+ 2 t iJ  p,i? ' i  

— ?---------------------------[ --------------------- 1lp"v J v i v a / ?  " H liq) P vap ^

bubbly-slug flow 0.3 < a  < O.C.

<t> =

02

0.8 r

1  +  X

V  JA  L

slug-droplet flow 0.8 < a  < 0.95:

1 + X
3-5 p ,?

- 1
vap JA

0.2

( n ) 0.8 f

0 = 1 + x P Hq j
1  +  X

P vaP y V

J\va p P jiq  

"H liq P vap

1
JA

0.2

droplet flow a  >0.9o:

<t> = 1
0.2 r 0.8 vTl.8

vap

liq

vap

'l i q

1 +  x 'liq - 1

yj

(4.58)

(4.59)

(4.60)

(4.61)
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4.3.4. Capillary pressure

According to relation (3.24) normal capillary pressures can be defined as
follows:

Ph
d 2x , 

^ J T  + /4 
/=! SZ,

J

i
7=1

dx

dzj

c- i d 2x . r & Y
6 " '5 az- ' 5 dzi

'  J v ' /

(4.62)

From the above relation it can be seen that the capillary pressures are described by 
the terms with the dryness fraction gradients. Their contribution is controlled 
by capillarity coefficients which, as it was shown in Section 3.2, are closely related 
to the surface tension o f a flat interface.

In order to describe capillary phenomena in one-dimensional approach, some 
simplifications are proposed. First o f all, in such an approach the capillary pressure 
can be expressed by the derivatives o f the dryness fraction in flow direction only. 
Since in one-dimensional approach the anisotropy o f normal stresses is lost, thus, as 
it is done with pressure in isotropic systems, we propose to replace the spherical 
tensor o f capillary pressures by the following isotropic tensor;

P
k

(4.63)

and to express the capillary pressure by squared derivative o f the dryness fraction 
along flow direction:

fd x ' i (4.64)

Such a physical simplification allows to describe capillary effects with the use of  
a single phenomenological coefficient o f capillarity k which controls the contribution 
o f the surface tension forces to the stress tensor and possesses clear physical sense.

4.4. Free parameters o f  the model
The presented mathematical model o f flashing flow has four free parameters. 

These are phenomenological coefficients o f proportionality which model the 
properties o f heterogeneous two-phase system on macroscopic level and originate 
from phenomena taking place on microscopic level.

Three free parameters appear in the expression for the volumetric source of 
vapour mass (4.48). These are the linear relaxation time p, the non-linear relaxation 
time y and the energetic capillarity coefficient k .  The linear relaxation time P 
according to definition (4.49):

p i / y

is a function o f  density, temperature, kinetic coefficient / describing dissipative 
effects o f relaxation and a constant f \  dependent on the coefficients appearing in
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the expansion o f the Helmholtz free energy o f a uniform system in a Taylor series. 
This constant can be calculated from relation (4.45) after taking into consideration 
the expression for the free energy o f a uniform system (3.49):

Thus, theoretical calculation o f the relaxation time P requires the knowledge o f three 
constants: /, /,* and , which are difficult to determine. The constant /'! determines 
the contribution o f the leading quadratic term in the expression for the Helmholtz 
potential. It can assume only positive values, since otherwise the parent phase would 
be unstable [114]. Such a situation takes place in the critical point where fluids 
change their state o f aggregation under the influence o f infinitesimal perturbations. 
Thus, while approaching the critical point the value o f /* should decrease to zero 
and above this point it should be negative. In the theory o f phase transitions it is 
assumed that the coefficient /* strongly depends on temperature [118], while the 
coefficient /* -  weakly. Thus, it is seen that the relaxation time P given by relation 
(4.49) strongly depends on temperature. For practical calculations the usage o f the 
following empirical formula is proposed [16]:

which gives good results in calculations o f two-phase water-steam flows.
The non-linear relaxation time y, according to definition (4.50), can be 

expressed as follows:

where the coefficient f \  is calculated from the formula:

Similarly to this coefficient is a function o f density, temperature, the coefficient and 
the constant /*. This constant is usually assumed to depend on temperature weakly 
[118]. Since also the temperature itself varies slightly in the considered flows, we 
will assume that the non-linear relaxation time is constant and its value will be 
determined in parametric analysis.

The third free parameter in the constitutive equation for the source o f vapour 
is the energetic coefficient o f capillarity K. It was defined by formula (4.51) as:

from which it can be seen that it also depends on density, temperature, the relaxation 
coefficient and the constant f \ r  This constant, according to definition (4.47) and the 
expression for the Helmholtz free energy, is defined in the following way:

/ 11= 1 2 / , V v7 + 2 /2\ (4.65)

(4.66)

(4.67)
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(4.68)

from which it is evident that it depends on the coefficient lk controlling the 
contribution o f the gradient energy. Since we do not have any phenomenological 
theory allowing us to determine both lk and /, we propose to determine the value of 
the whole coefficient k by fitting numerical results to experimental profiles.

The last free parameter o f our model is the mechanical coefficient o f capillarity 
k. It appears in the momentum balance equation and controls the contribution of 
reversible capillary stresses in the stress tensor. According to relation (4.63) the 
capillary pressure can be written as follows:

from which, after taking into account formulae (4.62) and (4.64) as well as the 
assumption on one-dimensional flow, we have:

As in the case o f previous coefficients, we have to determine the value o f the 
coefficient k in terms o f four unknown parameters /2, . . . , / 5, when lacking an 
appropriate theory for their determination. Also in this case the only solution is to 
determine the global value o f k by comparisons with experiment.

4.5. List o f  the model equations
The proposed mathematical model o f flashing flow is a homogeneous model, 

which takes into consideration the thermodynamic nonequilibrium between phases as 
well as the capillary effects resulting from a nonuniformity o f the two-phase system. 
The capillary effects were taken into account above all in the equation describing 
nonequilibrium vapour generation, since despite the possibility o f neglecting the 
thermodynamic properties o f interfacial areas, one should take into consideration 
their influence on the course o f phase transition [119]. Reversible capillary stresses 
were included in the stress tensor and the terms representing this kind o f stresses 
occur in the balance equations for momentum and energy. Taking advantage o f the 
generally accepted simplifying assumptions [35] we neglected mass, momentum and 
kinetic energy o f interfaces. Those assumptions have physical justification in 
a negligible small mass o f the intcrfacial areas.

The mathematical model consists o f the following balance equations:

• mass o f the mixture

(4.69)

(4.70)

dp dp dw pw dA
—  + w —  + p — =  - - -------- ;
dt dz dz A dz

(4.71)
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momentum of the mixture

dw dw dp dpk
p — + pw — + —  + — -  = - p g c o s x - x ^  ;

dt dz dz dz

energy o f the mixture

dh dh dp dp dpk 8pkp---- 1- p w----------- w--------------w----- = x TPw:
dt dz dt dz dt dz

mass o f vapour

dx dx F
----- h W---  : vap

dt dz p

and of constitutive equations providing relations for the following quantities: 

• density o f the two-phase mixture

(4.72)

(4.73)

(4.74)

- = xv,aP(p )+  (i -  (p, K  (p > h> x A  (4 -75)

specific enthalpy o f water

K  =
h ~ XKap{p)

\ - x

source o f vapour mass

vap —x (x — x f  d 2( x - x )
-------- -I--------—+ K ---- ^
P y dz2

friction force

'■.TP
2  A P»,

capillary pressure

p k = - k
f d x } 1

\ dz j

(4.76)

(4.77)

(4.78)

(4.79)

The state vector comprises the following fluid-flow and thermodynamic 
parameters:

w

(4.80)

x
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5. Wave properties of the model

5.1. Wave phenomena in two-phase flows
In flows with large gradients o f pressure and density, the essential role in the 

formation o f  the fields o f these parameters is played by fluid compressibility [85]. 
The influence o f compressibility manifests itself in the strongest way in gas flows 
with high velocities where we deal with wave phenomena. After exceeding the 
speed o f sound, the processes occurring in the flow have qualitatively different 
character than in subsonic flows. Rapid jumps o f the flow parameters (shock 
waves) can take place, zones o f limited propagation o f small disturbances (sound 
waves) occur, in divergent channels velocity increase is observed. All the above 
listed phenomena are well known and described in gasdynamics which deals with 
compressible flows with high velocities.

Similar effects o f wave nature are observed in two-phase flows, where besides 
two phases - compressible vapour and incompressible liquid -  material interfaces 
additionally occur. Within the interfaces, the processes o f mass, momentum and 
energy exchange take place which essentially influence the wave properties of the 
two-phase mixture. Inertia o f those interfacial transport processes is the reason for 
dispersion o f the system which means that small disturbations being carriers of any 
information in such a system propagate with a velocity dependent on frequency of 
these disturbations. The velocity o f propagation o f small disturbances is additionally 
a function o f the rate o f  these transport processes and the content o f individual 
phases in the mixture.

Two-phase mixtures very easily attain transonic flow velocities [27, 120]. The 
generation within an incompressible liquid o f a small amount o f vapour causes the 
creation o f a compressible two-phase mixture o f lower density. In such a vapour- 
liquid two-phase system the velocity o f propagation o f small disturbances is very low 
as compared to that in pure liquid where the changes o f pressure with density are 
very large. After exceeding the critical velocity by a fluid choking o f the flow takes 
place and, as a consequence, a physical limitation o f mass flux flowing through the 
canal for given stagnation conditions. Blockage o f a channel with all its 
consequences can easily occur in a flow o f a compressible two-phase medium, like 
the water-steam mixture. As it turns out [121], in the flow o f water and its vapour 
the phenomenon can already occur at low dryness fractions x < 0.01. It results from 
the fact that the mixture o f such a composition, despite a negligible mass content of 
the vapour, is characterised by large compressibility which owes up to a few 
hundred times greater specific volume o f the compressible vapour phase as 
compared to the incompressible liquid. Studies on two-phase water-steam flows 
show [122] that the critical velocity in such systems is a few orders o f magnitude 
lower than that in pure water or steam and depends on the volumetric content of 
individual phases. Taking into consideration the fact that the process o f evaporation 
dx > 0 in a flow is usually accompanied by an increase o f velocity brought about by
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density decrease, as well as substant'al lowering o f the cr:i cal velocity, it is easily 
seen that choking conditions and shock waves can occur relatively early. Those 
undesirable wave phenomena are the reason for large losses o f energy in the flow 
and often lead to dangerous breakdowns o f industrial devices.

The connected with flow choking value o f the critical mass flux o f  a two-phase 
system depends on several factors and the phenomenon o f choking is far more 
complicated as compared to a single-phase flow, since rapid expansion o f  the fluid 
can bring about mechanical and thermal nonequilibrium [17]. Apart from inlet 
(stationary flows) or stagnation (unsteady flows) conditions, the value o f  the critical 
mass flux is influenced by such parameters like channel geometry, its length and 
diameter, liquid purity and frictional losses.

A completely new phenomenon o f wave nature, not observed ;n single-phase 
flows, is pseudocrif cality o f the flew. It was discovered by Boure [123], and its 
interpretation based on the theory o f linear waves was given by Downar-Zapolski 
[49], A flow is pseudocritical when large changes o f backpressure cause not large 
and sometimes experimentally undetectable change o f inlet conditions. In such 
a way, the increase o f pressure drop in the channel does not bring about any 
increase o f the mass flow rate, despite the fact that we are still in the regime o f  
subcritical flow [124], The phenomenon o f pseudocriticality results from a strong 
damping o f the wave forerunner, which is very long and precedes its front o f high 
amplitude. Since the wave front propagates with the equilibrium velocity, at 
sufficiently large velocities o f the flow, it is inaccessible for a part o f the channel, 
while moving with the frozen velocity forerunner is so strongly damped that the 
energy o f the wave moving upstream is very small. It results in an imperceptible 
variation o f the mass flow rate, sometimes smaller than the applied measurement 
technique despite the existing subcritical conditions.

5.2. Analysis o f  small disturbations

5.2.1. Dispersion relation

In the analysis o f  wave properties o f a model an important role is played by the 
method o f small disturbations. It consists in supern aposing on an a priori solution a 0 
of the model equations a small disturbaf or in the form [125]:

ct =  o ° +  8 a  , (5.1)

where 5 ct is a very small quantity smaller than unity. As a result o f  the analysis we 
obtain a dispersion equation which tells us whether the model is dispersive, at what 
velocity small disturbations propagate as well as if they are damped. The answer o f  
the system o f equations to such a disturbation determines stability o f  the model. 
When an infinitesimal disturbation is damped then the model s stable and correctly 
describes the considerable physical phenomenon. Otherwise, when the disturbation 
is amplified and during propagation its amplitude Ticreases, then the model is 
unstable and results in non-physical solutions o f really stable processes.
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In order to perform the analysis o f small disturbaticns the system o f  equations of 
the model presented in the previous chapter must be written in the symbolic fom

■)a v.)g 32 aA (a)—  + B(o}' — = C(a,z)-t-D(a)~—-  + E(a) 3 (d a
3 z31 '~'dz " '3 z 2

where the state vector a  (primitive variables) comprise^:

w

+F-3 f 3 a Y
31 3z

(5.2)

G = (5.3)

The nonsymmetrical matrices o f coefficients A and B in Equation (5.2) take the 
following form:

(5.4)

B =

The source vector C has the form:

O *<3 v , "

1 0 0 0
—

1O

1 0
?

0 0 0 1

-  V wvp wvh
w V 0 0

0 - v w w 0

0 0 0 w

C =

vw dA 
A dz 

vCx

vCxw
A
x — x

■gcosx

( x - x j

p
while the source matrix D is given as:

D =

0 0 0 0
0 0 0 0

0 0 0 0

0 - K Xp -KXh K

(5.5)

(5.6)

(5.7)
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where: v -
1

v, =
3vj
dp

vh =
h.x

dv
dh

v„ =
p,x

dv
dx x p =

p,h

d 2x
dP 2

, and x, =
d 2x
dh2

The remaining rwo matrices in Equation (5.2) are defined as follow';:

0 0 0 0

0 0 0 -  kv

0 0 0 wkv

0 0 0 0

'0 0 0 o '

0 0 0 0

0 0 0 kv

0 0 0 0

(5.8)

(5.9)

The method o f small disturbations can be solely used to linear terms o f  the 
matrix Equation (5.2) [126]. Therefore, the last two terms o f this equation will be 
neglected in further analysis. Proceeding accord ig  to the procedure o f  Ramshaw 
and Trapp [127] we obtain the following relation from Equation (5.2) [128]:

a (ct°+ 5 

= c(o° +

a ) 3 (°V 5 g ) + B (a°+ S a ) 3fr"+ S g) =
dt dz

8 s ,z )+D (a“+ So
dz‘

(5.10)

Expanding the matrices A, B and D as well as the vector C in a Taylor series about 
the unperturbed solution G° and limiting ourselves to linear terms o f  the expansion, 
from Equation (5.10) we obtair:

A (v ° )
3A ^3a° 38a------- 1— ----

dt dt
+ B (o°)+ 5 a

= c(a°,z) + ■
dC
da0

8a + d (°°)+ -
3D
3a 0

8a

7 f  n_o 

V
(  -}2 0 Ad a  d ea

3B
3a°

3a0 38a ^
+

dz dz

dz2 dz2

(5.11)

7
Performing operations and taking into consideration the identically satisfied 
unperturbed Equation (5.2) as well as neglecting small terms o f order 0(8:) we 
finally obtain:

3 c°  ' ^ - °. ( 0\3 og 3A c d o ” _ /  o) A(c j ------ + — - o o — - + B(o ]

3C _ 0\d 'o a  = — 8 a + l > ^ " ) — ^  +
3 G

dt 3a° dt
\d28o 3D  

3 z 2 +  3 a °

38 a 3 li ~ 3 a 1
+  — -  5<r

oa

dz 3 a 0 
32a°
3z2 ‘

dz
(5.12)
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This equation describes small disturbations about an unperturbed solution with 
local values ct°, do°/dt, d o a/dz, 3 2a ° /3 z 2, which are treated here as fixed. 
Assuming further that the disturbation acting on the medium is harmonic, we assume 
it in the standard form:

8 a  =  8CT0 e x p [/( fe -r o t)] , (5.13)

which is a function o f  the wave number k and the frequency o f  disturbations to. 
Inserting the harmonic disturbation (5.13) into Equation (5.12), after simplification 
we obtain:

-  icoA (a0 )8 a 0+ 8  a 0 + ikB (a0) 8 a 0+
3 a 0 dt

3B 3a° 
d a 0 dz

5  o n =

3C
d o 0

S c 0- £ 2d (c ° ) 8 g 0+  d ° 0 3 °  8 ctq .
(5.14)

do dz2
This equation can be next transformed into the form:

-icoA(g° )+  m ( a ° ) + k 2D( o0) - +  g (g° ,d, o ° ,d z a0,d 2z o ° )
a a

where we substituted:

_ dA do 0 3B 3a° 3D 32o° 
G = r— :— + ■

8 a ° = 0 .  (5.15)

(5.16)
3o° 31 do0 dz do 0 dz2

This relation is a homogeneous linear equation with respect to 8 ct°. It possesses 
nontrivial solutions only when the main determinant is equal to zero, that is when 
[129]:

3C
de -  icoA(g° )+  i7cB(c° )+  K2d (g0 ) ~ 4 \ + g (o° , 3, a 0, 3 , g° , 3? g° )

3 c
=  0 . (5.17)

The above formula is the dispersion equation determining a relation between the 
wave number k and the frequency co. As it is seen from the above equation, the 
phase velocity determined by the relation '^(co) = co / k (co) is a function o f  the 
frequency, which means that the model is dispersive. The dispersion o f  our model 
results from the fact that the algebraic source vector C is a function o f  the state 
vector 0  as well as from the inclusion o f differential sources expressed by the 
matrix D. One can indicate one more source o f  dispersion in the model -  it is matrix 
E, which results from the fact that the model i 3 described by means o f the system of 
almost-linear partial differential equations in which the matrices o f coefficients 
A = A (a ) , B =  B (a ) and D = B (a )  depend on the state vector. That is why in the

dispersion relation (5.17) the terms ( 3 ^ / 3 o o) / (3 0 ° /3 t ) ,  ( 3 B / 3 a 0) /(3 a ° /3 r ) ,

and (3 D /3 a o)/(320 °/3z2) appear, which are a manifestation of nonlinearity of the
model. Let us emphasize that the capillary properties enter through the equations of 
state both to the matrices A and B, and to the vector C, as well as through the 
constitutive equation to the matrix D.
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5.2.2. Disturbation velocity and attenuation coefficient

The dispersion relation (5.17) can be solved only after some simplifications 
[125]. Assuming a weak variation o f the matrices A, B and D with the state vector 
as well as assuming that local unsteadiness 5 c ° /5 /  and gradients do°/dz, 
d 2c°/dz2 o f  the state vector are small, we can neglect the non-linear terms and 
assume E = 0. Assuming moreover a small variation o f the cross-sectional area o f  
the channel dA / dz = 0(5), neglecting body forces and assuming w = 0 (5), we 
reduce the vector C to a function depending only on thermodynamic nonequilibrium 
and obtain:

3C
da°

0

0
0

1 ^ ( x - x ) 2 ^

P +

0

0

0

0

0

0

l OJ i XI NJ

x p

y P yk 7
—

1 3(x-x)2

P

(5.18)

The regard to the assumptions in solving the dispersion Equation (5.17) leads to the 
following algebraic equation:

( i f i )P+  (<»i + ' if,  + <*%))P  + (®’/ j  + /0> V ,)= 0 , (5.19)

where:

p  y

h  =  VPK  +  V V / , K  +  W x K X h +  V K X p ,

f s = v p +vvh ,

( _  _ \ (  1 3 ( x - x ) 2
f t  =  lr  ~ VP~ VVh ~ V*XP ) n + ------------  ’p y j

This is a biquadratic equation with respect to the wave number k. It possesses four 
complex solutions k., k2, k3 and k4, where the real parts o f  the roots kx and k2 as 
well as k3 and k4 have the same absolute values and differ only in sign, while the 
imaginary parts are equal to each other. It results from the properties o f the 
biquadratic equation which is invariant at transformation k —» -k. The wave number 
k being the number o f waves falling on a unit length depends, as it results from 
Equation (5.19), on the frequency to and on the values o f  parameters o f the
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thermodynamic state o f  the system which are taken into account in the coefficients 
j\  . . . / 6. Since k is a complex number, then we can write it in the form o f  a sum of 
real and imaginary part:

£ = Re(*)-F/Im(/t). (5.20)

The real part o f the wave number k is a ratio o f the frequency co and the phase 
velocity cph [130]:

Re(^) =  —  > (5.21)
cPh

while the imaginary part is interpreted as an attenuation coefficient [130]:

Im(&) = r). (5.22)

Hence we have:

, co
« = -----+ ir\- (5.23)

cPh

The existence o f four solutions which, as far as the absolute value o f the real 
parts is concerned, constitute two different solutions means that the model possesses 
four velocities o f propagation o f small disturbations. Two o f them have the same 
absolute value and differ only in sign, thus a disturbation propagates with the same 
velocity in two opposite directions. The same can be said about the remaining pair of 
velocities at which disturbations propagate upstream and downstream. Thus, in one 
direction small disturbations o f any physical quantity can propagate at two different 
velocities. From the point o f view o f attaining the critical conditions, which is 
equivalent to the complete blockage for any kind o f infonnation generated 
downstream, the most important is the largest velocity. The fact that a flow exceeds 
the lower velocity o f propagation o f disturbations does not mean complete choking 
since those disturbations will always be able to move with a higher velocity and only 
after exceeding this velocity choking o f the channel will occur.

Attenuation o f a given velocity is the same in both directions since the imaginary 
parts o f  the solutions are equal to each other. As far as the value o f attenuation at 
different velocities is concerned, it is different and, as it will be shown, higher for 
larger velocities and frequencies.

5.2.3. Numerical analysis of the dispersion equation

Numerical analysis was begun with calculations for the relaxation model in 
which the process o f relaxation is described by means o f two algebraic terms with 
constant relaxation times (3 and y. Figure 5.1 presents the phase velocities for this 
model as a function o f frequency o f disturbations as well as the variation o f this 
velocity with the nonlinear relaxation time y is additionally shown. As it can be seen 
from the figure the velocity o f disturbations increases along with the increase o f
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Figure 5.1. Phase velocity cph as a function offrequency ( at different values o f the coefficient o f  
nonlinear relaxation y : I -  y = 3.35e-5, 2 -  y = 3.35e-6, 3 -  y = 3.35e-7; p  = 1.5 bar, a  = 0.2

Figure 5.2. Attenuation coefficient Im(k) as a function o f frequency ( at different values o f  the coefficient 
o f nonlinear relaxation y: I -  y = 3.35e-5, 2 -  y = 3.35e-6, 3 -  y = 3.35e-7; p  = 1.5 bar,a = 0.2

their frequency, and m the limit co —» oo attains the frozen velocity c A lower limit 
of the phase velocity at co 0 is the so-called equ'ibrium velocity. The finite value 
of cph shows that the model is hyperbolic and possesses the properties o f  real 
two-phase flows in which the fluctuations o f the state parameters propagate with a 
given velocity. This velocity depends on the rate o f phase change which is 
characterised by the relaxation ' me. When the phenomenon proceeds very fast, i.e. 
is characterised by a low relaxation time, then the phase velocity in the whole range 
of frequencies is approximated by the equilibrium velocity which characterises the 
system in thermodynamic equilibrium and is independent o f  the frequency o f  
disturbat'ons. In such a system, the attainment o f equilibrium takes place faster than 
the disturbations are generated and in this connection the next impulses propagate in 
equilibrium medium Their velocity depends only on the values o f  parameters 
characterising the thermodynamic state o f  the system.
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Figure 5.3. Phase velocity cph as a function offrequency a> at different values o f the coefficient 
o f capillarity k : 1 -  k -  0.08, 2 -  k = 0.8, 3 -  k = 8.0, y = 3.35e-6; p = 1.5 bar, a  = 0.2

frequency [1/s]

Figure 5.4. Attenuation coefficient Im(k) as a function offrequency to at different values o f  the coeffi
cient o f capillarity k : 1 -  k = 0.08, 2 -  k = 0.8, 3 -  k = 8.0, y = 3.35e-6; p  = 1.5 bar, a  = 0.2

A graph o f attenuation for the relaxation model is shown in Figure 5.2. It is 
clearly seen that signals o f higher frequencies are damped stronger, that is the time 
o f their action in the flow is shorter as compared to that for shorter waves. For all 
the times o f  nonlinear relaxation the coefficient o f attenuation tends to zero in the 
limit o f  low frequencies at which equilibrium is reached in the two-phase mixture. At 
high frequencies o f the generated signal its damping in the two-phase system is in 
practise constant and in infinity aims at a limited value. In faster processes, that is 
with shorter characteristic times, damping o f the signal is, as it is seen, larger. For 
infinitely fast phenomena in which a new equilibrium state is attained immediately, 
also the disturbations are so strongly damped that they “die” at once.

The proposed model in which the energy o f interfacial surfaces is described by 
the term with the second derivative o f the nonequilibrium dryness fraction x has two 
velocities o f propagation o f small disturbations. The lower one is in the order of 
2 m/s and is practically constant in the whole range o f  frequencies (Figure 5.3).
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Figure 5.5. Phase velocity eph as a function o f frequency to at different values o f  the coefficient 
o f capillarity’ k : I -  k = 0.08, 2 -  k = 0.8, 3 -  k = 8.0, y = 3.35e-6; p = 1.5 bar, a  = 0.2

It does not exhibit significant variations with the variation o f  the capillarity 
coefficient k which is responsible for the contribution o f interfaces. Attenuation 
corresponding to this velocity is also constant in a wide range o f  frequencies, but 
exhibits a stronger dependence on the coefficient o f capillarity (Figure 5.4).

However, from the point o f view o f attaining the critical conditions the most 
important is the highest velocity at which disturbations can propagate in a given 
model. Taking into consideration the second derivative causes that the quadratic 
form o f the system o f balance equations is undetermined and the system becomes 
parabolic which means that the velocity o f propagation o f small disturbations can be 
infinitely large. It is shown in Figure 5.5, when a relationship between the phase 
velocity and the frequency is drawn. The relation c h(co) was calculated for different 
values o f  the coefficient o f capillarity k. It is clearly seen, especially for larger k, 
that the higher the frequency o f disturbations, the faster they propagate, tending to 
infinity. It is a characteristic feature o f parabolic models. The change o f  the 
coefficient o f capillarity acts so that its increase increases also the phase velocity. It 
is also worth noting that in comparison with the relaxation model, the order o f  
magnitude o f the velocity for the investigated range o f frequency substantially rose. 
At y = 3.35e-6, in the model without interfaces for co = le+5 s_l this velocity 
is equal to 30 m/s, while in the model with interfaces its value reaches 9000 m/s. It is 
of course a non-physical value, not recorded in experiments. The reason for this 
may be the exceeding o f the range o f frequency for which a continuous model o f  
two-phase flow can be used. The wavelength corresponding to frequency le+5 is 
far smaller than the characteristic size o f dispersed phase for which the diameter o f  
a bubble D = 0(m~3) is o f such a size. Therefore, the generation o f disturbances 
of wavelengths shorter than a limiting value makes no sense as well as investigation 
of a model out o f the range o f its application.

An additional explanation o f physical impossibility o f effective propagation o f  
disturbances with so large velocities is its stronger and stronger damping. A graph o f  
the coefficient o f attenuation as a function o f frequency is shown in Figure 5.6, from
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Figure 5.6. Attenuation coefficient Itn(k) as a function o f frequency co at different values o f  the coeffi
cient o f  capillarity k : 1 -  k = 0.08, 2 -  k = 0.8. 3 -  k = 8.0, y = 3.35e-6; p =  1.5 bar, a  =0.2

which it is seen that in the range o f very large frequencies the larger the frequency 
o f  disturbations, the stronger they are damped At infinitely short waves their 
damping is infinitely large, which means that such signals will be immediately 
“extinguished” and the range o f their influence will be physically insensible. Also the 
tendency o f variation with the change o f  the coefficient o f capillarity is correct, 
since in the model without interfaces the attenuation was stronger than in the model 
with interfaces, and as it is seen from Figure 5.6 the larger their contribution, the 
weaker the attenuation and the slower variation with frequency. In the range o f  very 
low frequencies the velocity o f  disturbations is in the order o f a dozen to a few 
dozen m/s and such values are recorded in real flows. Such disturbations are 
damped in the model with a constant strength.

5.3. Critical two-phase flows

5.3.1. Critical velocity and flow choking

The definition o f critical velocity and connected with it choking o f  a flow is clear 
and precisely formulated for a single-phase compressible medium. In a one-dimensional 
flow o f  gas without heat transfer with the surroundings, one can neglect interactions 
with the surroundings and treat the adiabatic flow as isentropic without internal 
dissipative processes. The critical velocity in such a flow is the isentropic speed of 
sound (velocity o f propagation o f small disturbations) defined as follows [43]:

The critical velocity is always attained in a critical cross section which is the 
smallest section o f the channel (geometrical throat) in case o f a nozzle, or the outlet 
section in case o f a pipe. The critical mass flow rate is calculated on the basis of 
fluid-flow and thermodynamic parameters attained in the critical section [43]:

(5.24)
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For the considered isentropic flow o f gas, the values o f critical parameters are 
functions o f stagnation parameters (stagnation pressure, stagnation density) and the 
thermodynamic properties o f the system (specific heats ratio). In this connection the 
maximal possible flow rate is completely determined by the stagnation parameters, 
the equation o f state and the minimal section.

Such approach to the problem and automatic transfer o f definitions to the case 
of one-component two-phase flows can be misleading [124], It results not only from 
a larger complication o f the processes taking place in two-phase flows, caused by 
the existence o f interfaces, nonequilibria o f the phenomena and two-dimensional 
effects, but also from completely new phenomena not occurring in single-phase 
compressible media, as pseudocriticality or dispersed shock waves. Also the 
smallest cross-section o f the channel usually associated with a place o f extremum of  
physical parameters loses its importance [124], Therefore, the condition o f  the flow 
criticality cannot be a priori postulated but should result from physical observations 
of the flow and the assumed theoretical model.

As it was shown by Bilicki and Kestin [131], the critical conditions are the same 
both for stationary and nonstationary form o f balance equations. A conclusion 
follows that the phenomenon o f choking can be studied, without a loss o f  generality, 
for steady-state flows.

One can distinguish three physical definitions o f stationary choked flow [132]:

• flow is choked when it reaches the maximal mass flux in given stagnation 
conditions. An increase o f the mass flow rate can only be realised by
a change o f stagnation conditions;

• choked flow is characterised by the fact that inlet conditions as well as 
those in a converging part are independent o f outlet conditions while keeping 
stagnation conditions unchanged;

• choked flow reaches the speed o f sound. This speed is reached inside the 
channel in case o f nozzles, and at the outlet o f  the channel in case o f pipes.

In nonstationary conditions, choking o f a flow means that information generated 
downstream cannot propagate upstream beyond the section in which the critical 
flow occurs. Only the second definition directly characterises critical two-phase 
flow [17], The remaining two definitions require some caution while using in two- 
phase flows. In reality, the speed o f sound refers to a single phase and is different 
for water and steam. Moreover, any disturbation brings about a change o f structure 
of the flow which can influence the critical conditions. The physical criterion o f  
choking expressing the lack o f influence o f outlet on inlet parameters, 
mathematically means breaking o f a continuous dependence between inlet and outlet 
boundary conditions [128]. This is the case when determinant o f the system o f  
ordinary differential equations describing the flow:

dz
(5.26)
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is equal to zero [37]:

A = det btJ = 0 , (5.27)

where b . is an element o f the system matrix, c. -  is an element o f the column vector 
o f right-hand sides, while a  -  is a component o f the state vector.

A necessary condition for the occurrence o f critical flow requires the existence 
o f a singular point in critical section [134]. For this reason it is impossible to find an 
exact value o f the critical mass flux by forward numerical integration since it 
requires crossing the singular point. Nevertheless, it is possible to approach the value 
o f the critical flow rate by means o f maximal possible G and minimal impossible 
G mass flux [135]. It is recognised that any mass flux smaller than critical 
corresponds to possible flow and numerical integration can be performed in the 
whole length o f the channel L. However, a mass flux larger than critical corresponds 
to impossible flow since the critical flux is a maximal value in given inlet conditions 
and numerical integration cannot be carried out beyond the critical section. Thus, we 
have the following condition:

In practice, one can control the difference between G and G , and approach the 
critical mass flux with a given accuracy. This is the essence o f PIF method which is 
widely recommended for the determination o f critical mass flow rates in 
nonequilibrium two-phase flows [124, 135],

5.3.2. Numerical calculations of critical mass velocity

The mathematical model o f flashing flow described in Chapter 4 was tested in 
critical flows [136], The results o f  numerical calculations obtained by means o f the 
presented model were compared with the results o f  experimental measurements 
carried out in real critical flows o f water and steam. As a point o f reference we 
assumed two benchmark experiments: Moby Dick [27] and BNL [19]. The 
experimental studies were carried out at low and medium pressures (1-HO bar) and 
medium temperatures (100-M50°C), at low values o f the dryness fraction x < 0.02. 
The investigated medium was water o f high purity, which during a vertical upward 
flow through a measuring section was decompressed and evaporated. The 
conditions o f measurements and the geometries used are collected in Table 1. The 
reason for such a choice o f experiments were the largest discrepancies between 
theoretical models and experimental data at low pressures and dryness fractions 
[18]. As Boure [18] claims, the above discrepancies are caused by a crucial 
influence o f nonequilibrium phenomena and the conditions o f the generation of 
a new phase on the occurrence o f critical flow. A critical section occurs the earlier, 
the smaller superheating in flashing inception and the smaller nonequilibrium during 
the phase change.

(5.28)
and in a limiting case:

(5.29)
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The aim o f the numerical calculations was to determine by means o f  the PIF 
method critical mass velocities o f the water-steam mixture and to compare the 
results o f  the calculations with the results o f experimental studies. Boundary 
conditions at the inlet o f  the channel -  pressure, temperature, void fraction -  were 
assumed on the basis o f the experimental data, while the velocity o f the flow was 
selected in the PIF procedure in such a way as to attain conditions similar to critical 
at some section o f the channel. Consequently, for each experimental run the value o f  
critical mass flux was selected with a given accuracy. As a critical mass flux one 
assumed the arithmetic average o f maximal possible and minimal impossible mass 
flux determined in the PIF procedure. The accuracy o f  the calculations can be 
determined from relation [135]:

C* — C C — C'4 _ ^ p o s  imp _  ^ p o s  impAccuracy > ---------------- —----------------- .
2GC Gpos +  Gimp

Table 1. Experimental data usedfor calculations

E xperim ent G eom etry tbar] K  m <?,„ [kg/m 2s]

R e o cre u x

1

1.5-2 .1 116-126 4 1 5 0 -1 0 3 0 0

J o n es 1-5-10 O O •1- L/l o 1100-7900

The results o f the calculations o f  critical mass velocity for 48 runs o f the 
exper iment o f Reocreux [27] and 13 runs o f that o f Jones [19] are presented in 
Figures 5.7 and 5.8. Figure 5.7 presents numerically determined critical mass flux 
G , as a function o f the experimentally measured critical flux V  for the conditions 
of the Moby Dick [27] and BNL [19] experiments, while Figure 5.8 shows the error 
of the theoretical model in determination o f critical mass fluxes as a function o f the 
calculated critical flux. As presented in the following figures, the mathematical
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Figure 5.7. Numerically determined critical mass flux G al as a function o f experimentally measured 
value G for the conditions o f the Moby Dick and BNL experiments
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Figure 5.8. Error o f the theoretical mode! W determination o f critical mass fluxes as a function o f
calculated critical flux G

model shows a reasonably good agreement with the measurement data. In case of  
the Reocreux [27] studies, the maximal error in the calculations o f critical mass 
velocity does not exceed even 10%. For the Jones [19] investigations it ranges from 
10 to 20%, except for a single run No. 56 in which the discrepancy 32% was 
recorded. A tendency o f better agreement for increasing mass flux is worth noting. 
One can assume that in the limit o f G = 3009-00000 kg/m2s error o f the model will 
not exceed 10% with a general tendency to overpredicting the mass flux. The 
average error o f  the predicted critical mass velocity for all the runs amounts to 5% 
which in nonequilibrium water-steam flows is a good result [137].
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6. Flashing flow in channels

6.1. Parametric analysis o f  the model
The mathematical model o f flashing flow presented in Chapter 4 includes free 

parameters which are phenomenological coefficients modelling the properties o f  
a heterogeneous two-phase system on macroscopic level. Since we do not have any 
theories enabling us to calculate them on the basis o f  known microscale physical 
quantities, we propose to determine their values by fitting to experiment.

In order to preliminary verify the proposed model some numerical calculations 
were perfonned. The set o f  ordinary differential equations describing steady-state 
flow, together with closure equations and boundary cond cions, constitutes a unique 
differential problem. The calculations were perfonned using the shoot method since 
the problem was fonnulated as a two-boundary problem in which boundary 
conditions were imposed at the inlet and the outlet o f the channel. In the calculations 
we used the Runge-Kutta scheme o f fourth order with automatic selection of 
integration step. At the inlet we imposed pressure, temperature and void fraction, 
while at the outlet -  pressure. A1 these quantities were taken from experimental 
measurements o f real water- steam flows. The numerically obtained distributions o f  
physical parameters were next compared with experimental profiles. For the 
comparisons we used the measurement data o f the most reliable experiment on 
two-phase critical flows know as the Moby Dick [27].

As a basic criterion o f assessment o f the model the mass flow rate o f the two- 
phase mixture for a given pressure drop in the channel was assumed. The value o f  
the mass flow rate, being an integral characteristic o f a model, is very important 
from an engineering point o f view [103] and determines the usefulness o f  the model 
for the predictions o f critical mass flow rates in choking.

In order to determine the unknown values o f the coefficients in the Ginzburd- 
Landau equation a parametric analysis o f  the model was carried out. Based on the 
experimental data inlet conditions were imposed and the outlet velocity was selected 
so as to achieve agreement between the imposed outlet pressure and the values 
recorded in the experiment. Such calculations were carried out at constant values o f  
the coefficients o f linear and non-linear relaxation and the energetic coefficient o f  
capillarity. The coefficient o f linear relaxation p was assumed according to relation 
(4.66) proposed in Chapter 4 and during the calculations it was found that this 
formula gives good results. After finding this we finally decided to assume relation 
' 4.66) for further calculations. The constant p as a coefficient o f  proportionality in 
the algebraic linear term (.r-x)/p, has the greatest influence on the increase o f the 
nonequilibrium dryness fraction and crucially influences the process o f vapour 
generation. A reflection o f this process :s a distribution o f the void fraction -  the 
shape o f the curve a(z) expresses the character o f the evolution equation.

Therefore, assuming the established value o f the linear relaxation time P we are 
standing in front o f the problem o f determination o f the remaining two coefficients in 
Equation (4.48). Since we do not have any theory enabling their calculation, we
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Figure 6.1. Influence o f variation o f coefficient o f non-linear relaxation y on pressure distribution in 
channel fo r  run No. 400 o f the Moby Dick experiments, k = const
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Location [m]

Figure 6.2. Influence o f variation o f coefficient o f  non-linear relaxation y on voidfraction distribution 
in channel fo r run No. 400 o f the Moby Dick experiments, k = const

propose to assume them as constants and to select their values so as to achieve as 
good agreement with experiment as possible. The value o f the relaxation time y was 
selected in run No. 400 o f the experiment o f Reocreux [27] and assumed equal to 
3 .3 5 -10'6 s. A hypothetical impact o f a variation o f this coefficient on the calculated 
pressure and void fraction profiles in the channel is shown in Figures 6 .H 6 .2 . These 
calculations were carried out for a fixed value o f the energetic coefficient of 
capillarity k as well as for a fixed mass flow rate. As it is seen the mathematical
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Figure 6.3. Influence o f variation o f  capillarity coefficient k on pressure distribution in channel fo r  
run No. 400 o f the Moby Dick experiments, y = const

Figure 6.4. Influence o f variation o f capillarity coefficient k on void fraction distribution in channel fo r  
run No. 400 o f  the Moby Dick experiments. y= const

model is fairly sensitive to the variation o f this time constant -  not large changes o f  
its value, o f the order o f several percents, result in visible differences in the profiles 
of pressure and void fraction. Deviations from the experimental profiles are 
particularly distinct in the divergent part o f the nozzle. For a certain value o f y 
different about 30% from that giving the best agreement, the distribution o f pressure 
in the divergent section o f the channel has even qualitatively different character. In 
this case also the value o f void fraction substantially differs from the experimental
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value. In general, the increase in the value o f the coefficient o f non-linear relaxation 
y causes vapour overproduction and results in too low values o f pressure as 
compared with the experiment. Such a tendency can be explained by the fact that 
lower relaxation time brings flashing closer to equilibrium. A smaller time constant 
causes larger contribution o f the cubic relaxation term and following more intensive 
increase o f the nonequilibrium dryr.ess fraction. In the case o f y resulting in the 
correct value o f the outlet pressure a tendency to underpredict the calculated 
pressure as compared with the measured value can be noticed.

A similar parametric analysis was performed for a variation o f the coefficient of 
capillarity k. The results o f  the calculations are presented in Figures 6.3-^6.4. The 
curves corresponding to k = 0.8 m2/s are the profiles which fit the measurement 
points best. The pressure and void fraction distributions upstream from the throat are 
closest to the experimental profiles. In spite o f the fact that as walkmg away from 
the throat o f the channel the conformity o f the pressure profiles is getting worse, at 
the exit o f  the nozzle the value equal to the measured one was obtained. As far as 
the amount o f generated vapour is concerned, the onset and the end o f flashing are 
the places o f best confonnity. The increase o f k  by about 10% o f the optimal value 
results in qualitatively different pressure distributions in the divergent section, the 
outlet pressure is larger than that recorded in the experiment, and the vapour 
generation is underpredicted starting from some point. But, the variations o f k 
decreasing its value even more substantially influence the pressure profiles, and at 
a change by 10% the flow in the channel is impossible since a turning point occurs in 
the model.

Such a parametric analyst was also performed for the mechanical coefficient of 
capillarity k, and as a result o f the analysis its value was selected for k=  106 N. The 
results o f the calculations carried out with the inclusion o f the gradient term in the 
momentum equation are presented in the next section.

6.2. Numerical calculations offlashing flows in channels
The values established in the prev! iu s  section o f the free parameters are 

a closure o f the mathematical model. Their values were determined by fitting 
numerical results to run No. 400 o f the Moby Dick [27] experiments, known as the 
most reliable and benchmark experiment o f nonequilibrium two-phase flows. One 
can presume that the selected here values o f the free parameters will also be valid 
in the case o f  two- or three-dimensional models. It results from a character o f  three- 
dimensional equations describing the model that have the same number o f free 
parameters as the simplified quasi-one-dimensional equations.

After fitting the values o f the coefficients numerical calculations for other runs 
o f the experiment were performed. In order to verify the model more completely we 
selected for numerical calculations runs o f different pressures, temperatures and 
mass flow rates. HypotheUcal profiles o f basic physical parameters characterising 
the flow are shown in Figures 6.5 + 6.9. Both the pressure and void fraction profiles 
agree well with the experimental points. The zone o f evaporation is accompanied by
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Figure 6.5. Experimental and theoretical pressure distribution along channel fo r  run No. 422 o f the 
Moby Dick experiments, T.n -  121.08 °C, pm = 1.955 bar, G„p = 6499.2 kg/m's, Gia, = 6495 kg/m's
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Figure 6.6. Experimental and theoretical voidfraction distribution along channel fo r run No. 422 o f the 
Moby Dick experiments, Tjn = 121.08 ° C, pm = 1.955 bar, Grxp = 6499.2 kg/m:s, Gcal = 6495 kg/m's

a characteristic increased pressure drop as compared with a single-phase flow  
caused by a momentum change due to the decrease o f density o f the fluid. A 
characteristic feature is the pressure underprediction despite the equality o f the inlet
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Figure 6.7. Distributions ofphysical parameters o f flow along channel fo r  run No. 422 o f the Moby 
Dick experiments, T = 121,08°C, pm = 1.955 bar, Gap = 6499.2 kg/m!s, Gca, -  6495 kg/nfs; 

a) velocity and density, b) enthalpy, c) dryness fraction, d) temperature

and outlet pressures to the experimental values. A similar trend is observed for ran 
Mo. 459 performed for higher pressures, temperatures and mass velocities than in 
run No. 422. Discrepancy o f the calculated mass flux is here o f the order o f several 
percents. From the distributions o f temperature and dryness fraction the quantity of 
thermodynamic nonequilibrium prevailing in the fluid can be concluded. In a single
phase flow o f metastable water the thermodynamic nonequi'ibrium increases as a 
result o f  pressure drop causing an increase o f the equilibrium dryness fraction and 
decrease o f the saturation temperature at simultaneously constant temperature of 
the water and constant real dryness fraction. When the two-phase flow occurs an 
interesting physical situation arises -  the quantity o f noneqm'ibrium at first increases, 
despite the evaporation which should lead the system towards equilibrium. But it 
does not proceed so since the state o f equilibrium in the flow varies from point to 
point so intensively that the values c f  the equilibrium parameters evolve faster than 
the real quantities. In the vicinity o f the throat of the channel the largest deviations 
from equilibrium are observed and afterwards the system relaxes towards 
equilibrium

Similar calculations were carried out for the BNL [19] experiments. In this case 
the experimental measurements were performed in a convergent-dcergent nozzle at 
substantially higher pressures (p > 3 bars) and temperatures (7’>140°C ). The 
calculations were carried out for run No. 82 in which the pressure in the divergent 
section decreases, as well as for run No. 288 which is characterised by a pressure 
increase in the diverging section. In both cases not only qualitative but also
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Figure 6.8. Experimental and theoretical pressure distribution along channel fo r  run No. 459 
o f the Moby Dick experiments, Tm = 125.15 °C, pw = 2.279 bar, Gap = 10181.8 kg/m2s,

G„, = 10347 kg/m2s

Figure 6.9. Experimental and theoretical voidfraction distribution along channel fo r  run No. 459 
o f the Moby Dick experiments, Tin = 125.15 °C, p,„ = 2.279 bar, Gap = 10181.8 kg/m2s,

Gcat = 10347 kg/m2s

quantitative agreement with the experiments was achieved, which is seen from 
Figures 6.10-^6.13. The agreement was achieved with the coefficients selected in 
another experiment carried out in different conditions and for different channel 
geometry. Also the obtained mass fluxes correspond well to the measured values.
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Figure 6.10. Experimental and theoretical pressure distribution along channel fo r  run No. 82 
o f the BNL experiments, Tin = 142.3 °C, p,„ = 3.758 bar, G„p = 2360 kg/m:s, Gcd = 2084 kg/m!s
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Fig 6.11. Experimental and theoretical void fraction distribution along channel fo r  run No. 82 
o f the BNL experiments, Tm = 142.3 °C, p,„ = 3.758 bar, G,,xp = 2360 kg/nvs, GCQ, = 2084 kg/m2s

Verification o f the model was also performed in conditions radically different 
from the considered above. Experimental data were taken from the Russian 
experiments o f Karasev et al. [138] which were carried out in a microscale nozzle 
at pressures in the order o f a few dozen o f bars and temperatures about 300 °C.
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Figure 6.12. Experimental and theoretical pressure distribution along channel fo r  rim No. 288 
o f the BNL experiments, Tm = 149.1 °C, p,„ = 5.3 bar, Gap = 3580 kg/m2s, G„, = 4010 kg/m2s

Figure 6.13. Experimental and theoretical void fraction distribution along channel fo r  run No. 288 
o f the BNL experiments, Tin = 149.1 °C, p in = 5.3 bar, Grxp -  3580 kg/m'-s, = 4010 kg/m'-s

The results o f  numerical calculations are shown in Figures 6.14^-6.15. The 
comparison o f the numerical results with the experimental data was done only for 
pressure since measurements o f void fraction were not performed. As it is seen, the 
pressure reveals a reasonably good agreement with the experimental measurements.
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Figure 6.14. Experimental and theoretical pressure distribution along channel fo r the Karasev 
experiments, T.n = 299° C, p w = 85 bar
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Figure 6.15. Theoretical void fraction distribution along channel for the Karasev experiments,
T = 299° C, p  =85 barin 1 in

Despite its increase in the diverging section, an increase of void fraction is observed, 
which shows that evaporation takes place in this region of increasing pressure.

The performed calculations for different geometries of channels and at different 
physical conditions reveal not only satisfactory agreement of the model with the
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experiments but also the experimentally observed phenomenon of pressure decrease 
in a divergent channel in subcritical conditions. This is a characteristic feature of 
pseudo-critical two-phase flows which differentiates them from single-phase flows.

In the summary of the numerical calculations one can say the present model can 
be used for the predictions of pressure drops and the calculations of mass flow rates 
in the whole range of the dryness fraction 0 < v<  1. These quantities are integral 
characteristics of a model and are very important in engineering calculations. One 
can calculate both two-phase flows in the whole channel and flows of water with 
evaporation started inside the modelled channel. At the inlet of a canal one can 
assume subcooled, saturated or superheated water as well as a mixture of saturated 
steam and subcooled, saturated or superheated water. In terms of the presented 
model one can obtain distributions of basic thermodynamic and fluid-flow 
parameters, like pressure, velocity, temperature of water and steam, void fraction, 
dryness fraction, density, mass and volumetric flow rate, enthalpy, internal energy, 
kinetic energy of a mixture, water and steam. Also additional, specific for the model 
characteristics, like friction force, capillary stresses, intensity of vapour generation, 
e tc . are available.

7. Summary
The aim of the present paper was to describe phenomena taking place on 

interfacial surfaces during nonequilibrium flashing water flow. An attempt was made 
to build a mathematical model describing two-phase flows within the framework of 
homogeneous approach and taking into account heterogeneous structure of the 
system.

The above purposes were accomplished by formulating a theory of 
heterogeneous phase transitions of first order enabling us to describe capillary 
effects explicitly. The main aspects of the proposed theory concern constitutive 
equations for a stress tensor and free energy of the two-phase water-steam 
medium. On the basis of the second gradient theory and the theory of internal 
parameters, a relation for reversible stresses in a system with internal microstructure 
was derived. In this relation, a stress tensor of homogeneous system and a capillary 
stress tensor describing stresses induced by internal nonuniformity of the system 
were distinguished. Capillary stresses have their origin in the gradients of the 
dryness fraction within interfacial areas and on phenomenological level were 
modelled just with the help of these gradients. That is why the constitutive relation 
for the stress tensor of two-phase system includes gradient terms which are 
a representation of the capillary stresses.

The same theories were used to derive a formula for the free energy of the two- 
phase fluid. As in the case of the stress tensor, in this formula a part representing 
the free energy of homogeneous system was distinguished from an additional 
contribution coming from interfacial surfaces. The energy of interfaces was 
expressed by the gradients of the dryness fraction modelling nonlocal molecular 
interactions and the energy connected with them.
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The main aspect of the work is the formulation on the basis of the proposed 
theory of a nonequilibrium mathematical model describing two-phase water-vapour 
flows. One-dimensional balance equations for mass, momentum and energy of the 
mixture and balance equation for the mass of vapour were derived. The momentum 
and energy equations include gradient terms modelling the capillary stresses, which 
were obtained on the basis of the proposed form of the stress tensor. From the 
postulated form of the free energy, a constitutive equation for the volumetric source 
of vapour was derived. This is a relaxation equation and is an extension of the 
classical relaxation equation successfully describing nonequilibrium vapour 
generation. This new, in the field of two-phase flows, equation includes two 
relaxation tenns and a gradient one which is responsible for the contribution of 
interfacial energy.

The performed analysis of wave properties of the model revealed that it is 
dispersive with respect to small disturbations. This means that small exponential 
disturbations propagate with a velocity dependent on their frequency. It turned out 
that the velocity of disturbations increases along with the frequency to infinity, at 
a simultaneous increase of the coefficient of attenuation. Physically this means that 
information in such a system can propagate with very large velocities, but owing to 
their strong damping the spatial range of propagation is significantly limited. Thus, 
the model is dispersive and dissipative. A consequence of this is a limited mass flux 
in channel flows, which was confirmed by the numerical calculations of critical mass 
flux of the two-phase medium. A series of calculations performed for the conditions 
of critical flow revealed a good quantitative agreement of the theoretical model and 
the experimental measurements which suggest the practical usefulness of the model.

Apart from a theoretical significance consisting in showing a way of modelling 
of capillary phenomena within the framework of homogeneous approach, the 
present work is also of practical importance. The presented here one-dimensional 
model of flashing flow, besides calculations of critical flows, can also be used in the 
detennination of pressure and void fraction profiles in channels. Its usefulness in 
such an analysis was confirmed by the calculations carried out for the M o b y  D ic k  

and B N L  experiments. The comparison of the results of numerical calculations to the 
measurement data revealed not only qualitative but also quantitative agreement 
between them. Pressure drop in a channel, mass flow rate of liquid and vapour, 
maximal flow rate of a two-phase mixture are important, from an engineering point 
of view, integral characteristics of two-phase flows, which depend on various local 
parameters describing the flow. That is why the conformity of these characteristics 
with reality is a strong confirmation of physical correctness of the model and its 
mathematical representation.

A way of detennination of the coefficients appearing in the constitutive 
equations for the stresses and free energy of the two-phase system was not 
proposed. We limited ourselves only to an estimation of the values of the constants 
appearing in the one-dimensional equations by fitting calculations into experiments.
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A further step in the development of the presented model could be theoretical 
determination of the unknown phenomenological coefficients with the aid of 
molecular theories.

The presented considerations on the state of stresses concern only reversible 
stresses, not connected with motion of luid. It is generally recognised that the 
existence of interfaces introduces anisotropy of physical properties, and the motion 
of the interfaces causes dissipation of momentum and energy, which should also be 
taken into account in a model of the system with internal dissipative microstructure. 
Some analogies can be also suspected in the behaviour of thermal properties of such 
systems. Hence, it is seen that the presented model can be developed in various 
directions, and the present work is only the first and the simplest step in the 
description of capillary effects with the help of homogeneous model, well checked 
and for many years developed in the field of two-phase flows.
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