PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Phosphorus concentration and organic carbon preservation in the Blanknuten Member (Botneheia Formation, Middle Triassic), Sassenfjorden, Spitsbergen

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper attempts to reconstruct depositional to diagenetic processes that led to the increased contents of mineral phosphorus and organic carbon in the Middle Triassic organic-rich phosphatic Blanknuten Member sequence in Sassenfjorden, Spitsbergen. The results of petrographic and geochemical analyses suggest that enhanced preservation of both organic carbon (1-8%) and mineral phosphorus (3-26% P2O5) in the sequence is a result of excess production, deposition, and diagenesis of indigenous marine organic matter in the shelf environment under prevailing oxygen- deficient bottom conditions. The nature of organic sources and the character of depositional environment aided the preferential preservation of oil-prone kerogen of the Type II. Diagenesis of organic phosphorus in surficial sediments led to the formation of phosphate peloids and nodules that occur dispersed in fine-grained facies (3-10% P2O5), or are concentrated at recurrent granular horizons due to dynamic environmental processes (12-18% P2O5). Maximum phosphorus concentra- tion (up to 26% P2O5) is noted in granular phosphorite horizons that were covered and stabilized by deep-water microbial mats during periods of diminished bottom dynamics and non-deposition. An interplay between the deposition and diagenesis of organic matter in oxygen-deficient environment, the dynamic processes leading to reworking and redeposition of sediments, and the growth and phosphatization of microbial mats accounts for the observed complexity of the phosphorus and organic carbon distributions in the Blanknuten Member sequence.
Rocznik
Tom
Strony
139--173
Opis fizyczny
Bibliogr. 55 poz., fot., map., rys., tab., wykr.
Twórcy
  • Polish Academy of Sciences, Institute of Geological Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • [1]. Abdullah, W. H., 1999. Organic facies variations in the Triassic shallow marine and deep marine shales of central Spitsbergen, Svalbard. Mar. & Petrol. Geol., 16: 467-481.
  • [2]. Aller, R. C., Blair, N. E., Xia, Q. & Rude, P. D., 1996. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Continental Shelf Res., 16: 753-786.
  • [3]. Amit, O. & Bein, A., 1982. Organic matter in Senonian phosphorites from Israel — Origin and diagenesis. Chem. Geol., 37: 277-287.
  • [4]. Arthur, M. A., Dean, W. E. & Laarkamp, K., 1998. Organic carbon accumulation and preservation in surface sediments on the Peru margin. Chem. Geol., 152: 273-286.
  • [5]. Balzer, W., Helder, W., Epping, E., Lohse, L. & Otto, S., 1998. Benthic denitrification and nitrogen cycling at the slope and rise of the NW European Continental Margin (Goban Spur). Progress in Oceanography, 42: 111-126.
  • [6]. Bein, A. & Amit, O., 1982. Depositional environments of the Senonian chert, phosphorite and oil shale sequence in Israel as deduced from their organic matter composition. Sedimentology, 29: 81-90.
  • [7]. Belayouni, H. & Trichet, J., 1984. Hydrocarbons in phosphatized and non-phosphatized sediments from the phosphate basin of Gafsa. Org. Geochem., 6: 741-754.
  • [8]. Belayouni, H., Slansky, M. & Trichet, J., 1990. A study of the organic matter in Tunisian phosphate-bearing senes (Gafsa Basin, Tunisia). Relevance to phosphorite genesis. Org. Geochem., 15: 47-72.
  • [9]. Benalioulhaj, S. & Trichet, J, 1990. Comparative study by infrared spectroscopy of the organic matter of phosphate-rich (Oulad Abdoun basin) and black shale (Timahdit basin) senes (Morocco). Org. Geochem., 16: 649-660.
  • [10]. Curiale, J. A., Cameron, D. & Davis, D. V., 1985. Biological marker distribution and significance in oils and rocks of the Monterey Formation, California. Geochim. Cosmochim. Acta, 49: 271-288.
  • [11]. Dean, W. E. & Gardner, J. V., 1998. Pleistocene to Holocene contrasts in organic matter production and preservation on the California continental margin. Geol. Soc. Am. Bull., 110: 888-899.
  • [12]. Derenne, S., Largeau, C., Casadevall, E., Berkaloff, C. & Rousseau, B., 1991. Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: Origin of ultralaminae. Geochim. Cosmochim. Acta, 55: 1041-1050.
  • [13]. Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J. & Boutefeu, A., 1977. Métode rapide de caractérisation des roches méres de leur potentiel pétrolieur et de leur degré d'évolution. Rev. Inst. Fr. Pétr., 32: 23-42.
  • [14]. Forsberg, A. & Bjorøy, M., 1983. A sedimentological and organic geochemical study of the Botneheia Formation, Svalbard, with special emphasis on the effects of weathering on the organic matter in shales. In: M. Bjoroy, P. Albrecht, C. Cornford et al. (Eds), Advances in Organic Geochemistry 1981. Wiley, Chichester: 60-68.
  • [15]. Ganeshram, R. S., Calvert, S. E., Pedersen, T. F. & Cowie, G. L., 1999. Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: Implications for hydrocarbon preservation. Geochim. Cosmochim. Acta, 63: 1723-1734.
  • [16]. Gong, C. R. & Hollander, D. J., 1997. Differential contribution of bacteria to sedimentary organic matter in oxic and anoxic environments, Santa Monica Basin, California. Org. Geochem., 26: 545-563.
  • [17]. Harland, W. B., 1997. The Geology of Svalbard. Geol. Soc. London, Mem., 17,521 pp.
  • [18]. Holmer, M., 1999. The effect of oxygen depletion on anaerobie organic matter degradation in marine sediments. Estuarine Coastal & Shelf Sci.. 48: 383-390.
  • [19]. Hood, A., Gutjahr, C. C. M. & Heacock, R. L.. 1975. Organic metamorphism and the generation of petroleum. Am. Assoc. Petrol. Geol., Bull., 59: 986-996.
  • [20]. Hulthe, G., Hulth, S. & Hall, P. O. J., 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim. Cosmochim. Acta, 62: 1319¬1328.
  • [21]. Krajewski, K. P., 1989. Organic geochemistry of a phosphorite to black shale transgressive succession: Wilhelmoya and Janusfjellet Formations (Rhaetian-Jurassic) in central Spitsbergen, Arctic Ocean. Chem. Geol., 74: 249-263.
  • [22]. Krajewski, K. P., 2000a. Phosphogenic facies and processes in the Triassic of Svalbard. Stud. Geol. Polon., 116: 7-84.
  • [23]. Krajewski, K. P., 2000b. Isotopic composition of apatite-bound sulphur in the Triassic phosphogenic facies in Svalbard. Stud. Geol. Polon., 116: 85-109.
  • [24]. Krajewski, K. P., 2000c. Diagenetic recrystallization and neoformation of apatite in the Triassic phosphogenic facies in Svalbard. Stud. Geol. Polon., 116: 111-137.
  • [25]. Krajewski, K. P., Van Cappellen, P., Trichet, J., Kuhn, O., Lucas, J. Martin-Algarra, A., Prévôt, L., Tewari, V. C., Gaspar, L., Knight, R. I. & Lamboy, M., 1994. Biological processes and apatite formation in sedimentary environments. Eclogae geol. Hely., 87: 701-745.
  • [26]. Logan, G. A., Calver, C. R., Gorjan, P., Summons, R. E., Hayes, J. M. & Walter, M. R., 1999. Terminal Proterozoic mid-shelf benthic microbial mats in the Central Superbasin and their environmental significance. Geochim. Cosmochim. Acta, 63: 1345-1358.
  • [27]. Masran, Th. C., 1984. Sedimentary organic matter of Jurassic and Cretaceous samples from North Atlantic Deep-Sea Drilling Sites. Bull. Can. Petrol. Geol., 32: 52-73.
  • [28]. Maughan, E. K., 1980. Relation of phosphorite, organic carbon, and hydrocarbons in the Permian Phosphoria Formation, western United States of America. In: Géologie comparée des gisements de phosphates et de petrole. Colloq. Internat. Orléans, 6-7 Nov. 1979. Doc. BRGM, 24: 63-91.
  • [29]. Meunier-Christmann, C., Lucas, J. & Albrecht, P., 1989. Organic geochemistry of Moroccan phosphorites and bituminous shales. A contribution to the problem of phosphogenesis. In: P. J. Cook & L. Prévôt (Eds), Apatite and Phosphorites. Sci. Géol. Bull. Strasbourg, 42: 205-222.
  • [30]. Mørk, A. & Bjorøy, M., 1984. Mesozoic source rocks on Svalbard. In: A. M. Spencer et al. (Eds), Petroleum Geology of the North European Margin. Nor. Petr. Soc., Graham & Trotman, London: 371-382.
  • [31]. Mørk, A., Knarud, R. & Worsley, D., 1982. Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In: A. F. Embry & H. R. Balkwill (Eds), Arctic . Geology and Geophysics. Can. Soc. Petrol. Geol., Mem., 8: 371-398.
  • [32]. Mørk, A., Embry, A. F. & Weitschat, W., 1989. Triassic transgressive-regressive cycles in the Sverdrup Basin, Svalbard, and the Barents Shelf. In: J. D. Collinson (Ed.), Correlation in Hydrocarbon Exploration. Graham & Trotman, London: 113-130.
  • [33]. Mørk, A., Dallmann, W. K., Dypvik, H., Johannessen, E. P., Larssen, G. B., Nagy, J., Nottvedt, A., Olaussen, S., Pčelina, T. M. & Worsley, D., 1999. Mesozoic lithostratigraphy. In: W. K. Dallmann (Ed.), Lithostratigraphic Lexicon of Svalbard. Review and Recommendations for Nomenclature Use. Upper Palaeozoic to Quaternary Bedrock. Norsk Polarinst., Tromso: 127¬214.
  • [34]. Powell, T. G. & McKirdy, D. M., 1973. The effect of source materia], rock type and diagenesis on the n-alkane content of sediments. Geochim. Cosmochim. Acta, 37: 623-633.
  • [35]. Powell, T. G., Cook, P. J. & McKirdy, D. M., 1975. Organic geochemistry of phosphorites: relevance to petroleum geochemistry. Am. Assoc. Petrol. Geol., Bull., 59: 618-632.
  • [36]. Prahl, F. G., De Lange, G. J., Scholten, S. & Cowie, G. L., 1997. A case of post-depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain. Org. Geochem., 27: 141-152.
  • [37]. Reimers, C. E., 1982. Organic matter in anoxic sediments off Central Peru: relations to porosity, microbial decomposition and deformation processes. Mar. Geol., 46: 175-197.
  • [38]. Reimers, C. E., Kastner, M. & Garrison, R. E., 1990. The role of bacterial mats in phosphate mineralization with particular reference to Monterey Formation. In: W. C. Bumett & S. R. Riggs (Eds), Phosphate Deposits of the World, Vol. 3: Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 300-311.
  • [39]. Robinson, V. D., Liro, L. M., Robinson, C. R., Dawson, W. C. & Russo, J. W., 1996. Integrated geochemistry, organic petrology, and sequence stratigraphy of the Triassic Shublik Formation, Tenneco Phoenix #1 well, North Slope, Alaska, USA. Org. Geochem., 24: 257-272.
  • [40]. Sandstrom, M. W., 1980. Organic geochemistry of some Cambrian phosphorites. In: A. G. Douglas & J. R. Maxwell (Eds), Advances in Organic Geochemistry 1979. Pergamon Press, Oxford: 123-131.
  • [41]. Sandstrom, M. W., 1986. Geochemistry of organic matter in Middle Cambrian phosphorites from the Georgina Basin, northeastern Australia. In: P. J. Cook & J. H. Shergold (Eds), Phosphate Deposits of the World, Vol. 1: Proterozoic and Cambrian Phosphorites. Cambridge University Press, Cambridge: 268-279.
  • [42]. Sandstrom, M. W., 1990. Organic matter in Modern marine phosphatic sediments from the Peruvian continental margin. In: W. C. Burnett & S. R. Riggs (Eds), Phosphate Deposits of the World, Vol. 3: Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 33-45.
  • [43]. Scalan, R. S. & Smith, J. E., 1970. An improved measure of the odd-even predominanee in the normal alkanes of sediment extracts and petroleum. Geochim. Cosmochim. Acta, 34: 611-620.
  • [44]. Schou, L., Mørk, A. & Bjoøy, M., 1984. Correlation of source rocks and migrated hydrocarbons by GC-MS in the middle Triassic of Svalbard. Org. Geochem., 6: 513-520.
  • [45]. Sheldon, R. P., 1981. Ancient marine phosphorites. Ann. Rev. Earth Planet. Sci., 9: 251-284. Slansky, M., 1980. Gćologie des phosphates sédimentaires. Mem. BRGM, 114,92 pp.
  • [46]. Steel, R. J. & Worsley, D., 1984. Svalbard's post-Caledonian strata - An atlas of sedimentational patterns and palaeogeographic evolution. In: A. M. Spencer et al. (Eds), Petroleum Geology of the North European Margin. Nor. Petr. Soc., Graham & Trotman, London: 109-135.Tissot, B. P. & Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, Heidelberg, 699 pp.
  • [47]. Tissot, B., Durand, B., Espitalić, J. & Combaz, A., 1974. Influence of the nature and diagenesis of organic matter in formation of petroleum. Am. Assoc. Petrol. Geol., Bull., 58: 499-506.
  • [48]. Toth, D. J. & Lerman, A., 1977. Organic matter reactivity and sedimentation rates in the ocean. Am. Jour. Sci., 227: 465-485.
  • [49]. Trappe, J., 1998. Phanerozoic phosphorite depositional systems. Lecture Notes in Earth Sci., 76, Springer-Verlag, Berlin, 316 pp.
  • [50]. Trichet, J. G., Rachidi, M. & Belayouni, H., 1990. Organic geochemistry of phosphorites: relative behaviors of phosphorus and nitrogen during the formation of humic compounds in phosphate-bearing sequences. In: W. C. Bumett & S. R. Riggs (Eds), Phosphate Deposits of the World, Vol. 3: Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 87-97.
  • [51]. Vassoevich, N. B., Arkamkodzaev, A. M. & Geodekyan, A. A., 1974. Principal zone of oil formation. In: B. Tissot & F. Bienner (Eds), Advances in Organic Geochemistry 1973. Technip, Paris: 309-314.
  • [52]. Weitschat, W. & Dagys, A. S., 1989. Triassic biostratigraphy of Svalbard and a comparison with NE-Siberia. Mitt. Geol. Palaont. Inst. Univ. Hamburg, 68: 179-213.
  • [53]. Weitschat, W. & Lehmann, U., 1983. Stratigraphy and ammonoids from the Middle Triassic Botneheia Formation (Daonella shales) of Spitsbergen. Mitt. Geol. Palaont. Inst. Univ. Hamburg, 54: 27-54.
  • [54]. Winsnes, T. S., 1986. Bedrock Map of Svalbard and Jan Mayen 1:1000 000. Norsk Polarinstitutt Temakart Nr. 3. Norsk Polarinst., Oslo.
  • [55]. Worsley, D., 1986. The Geological history of Svalbard. Evolution of an Arctic archipelago. Den Norske Stats Oljeselskap, Stavanger, Norway, 121 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0015-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.