Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Phosphate accumulations in the Middle Triassic phosphogenic facies in Svalbard exhibit locally features of diagenetic recrystallization and neoformation of apatite. These features, seen on a microscale, reflect the development of hexagonal apatite crystal habit that replaced amorphous-like and globular micromorphologies of the original phosphatic fabric. The neoformed apatite crystals are commonly skeletal, either containing organic inclusions in crystal cores (Botneheia Formation in central and eastern Svalbard) or showing hollow or sieved cores with complex internal structure (Bravaisberget Formation in western and southwestern Spitsbergen). Detailed petrographic analysis (TLM, RLM, SEM, BEI, and XRD) of the apatite and associated diagenetic minerals, supported by the stable carbon and sulphur isotopic data (d13C and d34S apatite, d34S pyrite, d13C carbonate) suggest that the development of conspicuous skeletal apatite structure was a two-stage process. The first and major stage of neoformation of apatite (carbonate fluorapatite, CFA) was associated with early diagenetic processes in the anoxic sulphidic zone in organic-rich sediment column, reflecting maintenance of phosphatic bodies at shallow depths in the subsurface environment and recrystalli- zation of original phosphatic fabric at margins exposed towards the primary and mouldic pore space. The recrystallization was preceded by early diagenetic dissolution of biogenic silica (radiolaria, sponge) and followed by precipitation of carbonate cements that originated in deeper parts of the anoxic sulphidic zone. The second stage of apatite neoformation was confined to phosphate accumu- lations occurring in the West Spitsbergen Fold Belt, and related to burial processes and thermal degradation of kerogen. Thermal degradation of organic inclusions in apatite crystal cores led to the formation of conspicuous skeletal crystals and was associated with supplementary recrystallization. The well-defined neoformed apatitic fabric is seldom observed in the Botneheia and Bravaisberget formations, suggesting that the recrystallization processes were of negligible importance during diagenesis and burial of the Middle Triassic phosphogenic sequence in Svalbard.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
111--137
Opis fizyczny
Bibliogr. 56 poz., fot., map., rys., tab.
Twórcy
autor
- Polish Academy of Sciences, Institute of Geological Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
- [1]. Abdullah, W. H., 1999. Organic facies variations in the Triassic shallow marine and deep marine shales of central Spitsbergen, Svalbard. Mar. & Petrol. Geol., 16: 467-481.
- [2]. Al-Aasam, I. S., Taylor, B. E. & South, B., 1990. Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem. Geol., 80: 119-125.
- [3]. Bein, A. & Sandler, A., 1983. Early diagenetic oxidation and maturation trends in organic matter extracted from Eocene chalks and cherts. Chem. Geol., 38: 213-224.
- [4]. Bidle, K. D. & Azam, F., 1999. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 397: 508-512.
- [5]. Birkenmajer, K., 1964. Devonian, Carboniferous and Permian formations of Hornsund, Vest-spitsbergen. Stud. Geol. Polon., 11:47-123.
- [6]. Birkenmajer, K., 1977. Triassic sedimentary formations of the Hornsund area, Spitsbergen. Stud. Geol. Polon., 51: 7-74.
- [7]. Birkenmajer, K., 1981. The geology of Svalbard, the western part of the Barents Sea and the continental margin of Scandinavia. In: A. E. M. Nairn, M. Churkin, Jr. & F. G. Stehli (Eds.), The Oceanie Basins and Margins, 5: 265-329.
- [8]. Borowski, W. S., Paull, C. K. & Ussler, W., 1999. Global and local variations of interstitial sulphate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar. Geol., 159: 131-154.
- [9]. Canfield, D. E., Rai swell, R., Westrich, J. T., Reaves, C. M., Berner, R. A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulphur in sediments and shale. Chem. Geol., 54: 149-155.
- [10]. Chambers, L. A. & Trudinger, P. A., 1979. Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiol. Jour., 1: 249-293.
- [11]. Compton, J. S., Hodell, D. A. Garrido, J. R. & Mallinson, D. J., 1993. Origin and age of phosphorite from the south-central Florida Platform: Relation of phosphgenesis to sea-level fluctuations and δ13C excursions. Geochim. Cosmochim. Acta, 57: 131-146.
- [12]. Fritz, P., Drimmie, R. J. & Nowicki, V. K., 1974. Preparation of sulfur dioxide for Mass Spectrometer Analyses by combustion of sulfides with copper oxide. Anal. Chem., 46: 164-166.
- [13]. Froelich, P. N., Klinkhammer, G. P., Bender, G. P., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. & Maynard, V., 1979. Early oxidation of organic matter in pelagie sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43: 1075-1090.
- [14]. Froelich, P. N., Arthur, M. A., Bumett, W. C., Deakin M., Hensley, V., Jahnke, R., Kaul, L., Kim, K.-H., Roe, K., Soutar, A. & Vathakanon, C., 1988. Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precipitation. Mar. Geol., 80: 309-343.
- [15]. Glenn, C. R., 1990. Pore water, petrologie and stable carbon isotopic data bearing on the origin of Modern Peru margin phosphorites and associated authigenic phases. In: W. C. Burnett & S. R. Riggs (Eds), Phosphate Deposits of the World: Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 46-61.
- [16]. Glenn, C. R. & Arthur, M. A., 1988. Petrology and major element geochemistry of Peru margin phosphorites and associated diagenetic minerals: Authigenesis in modern organic-rich sediments. Mar. Geol., 80: 231-267.
- [17]. Glenn, C. R., Arthur, M. A., Yeh, H.-W. & Burnett, W. C., 1988. Carbon isotopic composition and lattice-bound carbonate of Peru-Chile margin phosphorites. Mar. Geol., 80: 287-307.
- [18]. Glenn, C. R., Arthur, M. A., Resig, J. M., Burnett, W. C., Dean, W. E. & Jahnke, R. A., 1994. Are modern and ancient phosphorites really so different? Proc. 29th Int7. Geol. Congr., Part C: 159-188.
- [19]. Gulbrandsen, R.A., 1970. Relation of carbon dioxide content of apatite of the Phosphoria Formation to regional facies. U.S. Geol. Survey Prof. Paper, 700B: B9-B13.
- [20]. Habicht, K. S. & Canfield, D. E., 1997. Sulphur isotope fractionation during bacterial sulphate reduction in organic-rich sediments. Geochim. Cosmochim. Acta, 61: 5351-5361.
- [21]. Irwin, H., Curtis, C. & Coleman, M., 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269: 209-213.
- [22]. Jarvis, I., Burnett, W. C., Nathan, Y., Almbaydin, F. S. M., Attia, A. K. M., Castro, L. N., Flicoteaux, R., Hilmy, M. E., Husain, V., Qutawnah, A. A., Serjani, A. & Zanin, Y. N., 1994. Phosphorite geochemistry: State-of-the art and environmental concerns. Eclogae geol. Hely., 87: 643-700.
- [23]. Jones, B. & Renault, R. W., 1995. Nannocrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya. Jour. Sediment. Res., A65: 154-169.
- [24]. Jones, B. & Renault, R. W., 1996. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand. Jour. Sediment. Res., 66: 265-274.
- [25]. Kastner, M., Garrison, R. E., Kolodny, Y., Reimers, C. E. & Shemesh, A., 1990. Coupled changes of oxygen isotopes in PO43 and CO32 in apatite, with emphasis on the Monterey Formation, California. In: W. C. Burnett & S. R. Riggs (Eds), Phosphate Deposits of the World: Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 312-324.
- [26]. Kim, D., Schuffert, J. D. & Kastner, M., 1999. Francolite authigenesis in California continental slope sediments and its implications for the marine P cycle. Geochim. Cosmochim. Acta, 63: 3477¬3485.
- [27]. Krajewski, K. P., 2000a. Phosphogenic facies and processes in the Triassic of Svalbard. Stud. Geol. Polon., 116: 7-84.
- [28]. Krajewski, K.P., 2000b. Isotopic composition of apatite-bound sulphur in the Triassic phosphogenic facies in Svalbard. Stud. Geol. Polon., 116: 85-109.
- [29]. Krajewski, K.P., 2000c. Phosphorus concentration and organic carbon preservation in the Blanknuten Member (Botneheia Formation, Middle Triassic), Sassenfjorden, Spitsbergen. Stud. Geol. Polon., 116: 139-173.
- [30]. Krajewski, K.P., 2000d. Phosphorus and organic carbon reservoirs in the Bravaisberget Formation (Middle Triassic), Hornsund, Spitsbergen. Stud. Geol. Polon., 116: 175-209.
- [31]. Krajewski, K. P., Van Cappellen, P., Trichet, J., Kulm, O., Lucas, J. Martin-Algarra, A., Prévôt, L., Tewari, V. C., Gaspar, L., Knight, R. I. & Lamboy, M., 1994. Biological processes and apatite formation in sedimentary environments. Eclogae geol. Helv., 87: 701-745.
- [32]. Lamboy, M., 1990. Microstructures of a phosphatic trust from the Peruvian continental margin: phosphatized bacteria and associated phenomena. Oceanol. Acta, 13: 439-451.
- [33]. Lofgren, G., 1974. An experimental study of plagioclase crystal morphology: isothermal crystalli-zation. Am. Jour. Sci., 274: 243-273.
- [34]. McArthur, J. M., Benmore, R. A., Coleman, M. L., Soldi, C., Yeh, H.-W. & O'Brien, G. W., 1986. Stable isotopic characterization of francolite formation. Earth Planet. Sci. Letters, 77: 20-34.
- [35]. Mørk, A. & Bjorøy, M., 1984. Mesozoic source rocks on Svalbard. In: A.M. Spencer et al. (Eds), Petroleum Geology of the North European Margin. Nor. Petr. Soc., Graham & Trotman, London: 371-382.
- [36]. Mørk, A., Knarud, R. & Worsley, D., 1982. Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In: A. F. Embry & H. R. Balkwill (Eds), Arctic Geology and Geophysics. Can. Soc. Petrol. Geol. Mem., 8: 371-398.
- [37]. Mørk, A., Dallmann, W. K., Dypvik, H., Johannessen, E. P., Larssen, G. B., Nagy, J., Nottvedt, A., Olaussen, S., Pčelina, T. M. & Worsley, D., 1999. Mesozoic lithostratygraphy. In: W. K. Dallmann (Ed.), Lithostratigraphic Lexicon of Svalbard. Review and Recommendations for Nomenclature Use. Upper Palaeozoic to Quaternary Bedrock. Norsk Polarinst., Tromso: 127- 214.
- [38]. Mullins, H. T. & Rasch, R. F., 1985. Sea-floor phosphorites along the Central California continental margin. Econ. Geol., 80: 696-715.
- [39]. Nathan, Y. & Nielsen, H., 1980. Sulfur isotopes in phosphorites. In: Y. K. Bentor (Ed.), Marine phosphorites. Geochemistry, Occurrence, Genesis. Soc. Econ. Paleontol. Minerał., Spec. PubL, 29: 73-78.
- [40]. Newton, R. J., Bottrell, S. H., Dean, S. P., Hatfield, D. & Raiswell, R., 1995. An evaluation of the use of chromous chloride reduction method for isotopic analyses of pyrite in rocks and sediment. Chem. Geol., 125: 317-320.
- [41]. Niewohner, C., Hensen, C., Kasten, S., Zabel, M & Schulz, H. D., 1998. Deep sulphate reduction completely mediated by anaerobie methane oxidation in sediments of the upwelling area off Namibia. Geochim. Cosmochim. Acta, 62: 455-464.
- [42]. Piper, D. Z. & Kolodny, Y., 1987. The stable isotopic composition of a phosphorite deposit: δ13C, δ34S, and δ180. Deep-Sea Res., 34: 897-911.
- [43]. Ray, J. S. & Ramesh, R., 1998. Stable carbon and oxygen isotope analysis of natural calcite and dolomite mixtures using selective acid extraction. Jour. Geol. Soc. India, 52: 323-332.
- [44]. Sandstrom, M. W., 1990. Organic matter in Modern marine phosphatic sediments from the Peruvian continental margin. In: W. C. Burnett & S. R. Riggs (Eds), Phosphate Deposits of the World: Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 33-45.
- [45]. Schuffert , J. D., Kastner, M., Emanuele, G. & Jahnke, R. A., 1990. Carbonate-ion substitution in francolite: A new equation. Geochim. Cosmochim. Acta, 54: 2323-2328.
- [46]. Strauss, H., 1999. Geological evolution from isotope proxy signals - sulfur. Chem. Geod., 161: 89-101.
- [47]. Thornburg, T. M. & Suess, E., 1990. Carbonate cementation of granular and fracture porosity: implications for the Cenozoic hydrologie development of the Peru continental margin. Proc. ODP, Sci. Results, 112: 95-109.
- [48]. Van Cappellen, P., Gaillard, J.-F. & Rabouille, C., 1993. Biogeochemical transformations in sediments: kinetic models of early diagenesis. In: R. Wollast, F. T. Mackenzie & L. Chou (Eds), Interactions of C, N, P and S Biogeochemical Cycles and Global Change. Springer-Verlag, Berlin: 401-445.
- [49]. Van der Plas, L., 1966. The Identifucation of Detrital Feldspars. Developm. Sedimentol., 6. Elsevier, Amsterdam, 305 pp.
- [50]. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godders, Y., Jasper, T., Korte, C., Pawellek, F.. Podlaha, O. G. & Strauss, H., 1999. 87sr/86,r, δ13C and δ180 evolution of Phanerozoic sew.vater. Chem. Geol.. 161: 59-88.
- [51]. Weitschat, W., 1986. Phosphatisierte Ammonoideen aus der Mitderen Trias von Central-Spitzbergen. Mitt. Geol.-Paläont. Inst. Univ. Hamburg, 61: 249-279.
- [52]. Weitschat, W. & Bandel, K., 1991. Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläont. Z. Stuttgart, 65: 269-303.
- [53]. Weitschat, W. & Dagys, A. S., 1989. Triassic c biostratigraphy of Svalbard and a comparison with NE-Siberia. Mitt. Geol. Paläont. Inst. Univ. Hamburg, 68: 179-213.
- [54]. Weitschat, W. & Lehmann, U., 1983. Stratigraphy and ammonoids h-om the Middle Triassic Botneheia Formation (Daonella shales) of Spitsbenien Mitt. Geol. Paläont. Inst. Univ. Hamburg, 54: 27-54.
- [55]. Whiticar, M. J., 1999. Carbon and hydrogen isotope systernatics of bacterial fornaation and oxidation of methane. Chem. Geol., 161: 291-314.
- [56]. Winsnes, T. S., 1986. Bedrock Map of Svalbard and Jan Mayen 1:100( 000. Norsk Polarinstitutt Temakart Nr. 3. Norsk Polarinst., Oslo.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0015-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.