PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phosphogenic facies and processes in the Triassic of Svalbard

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Middle Triassic sedimentary sequence in Svalbard provides an insight into ancient organic carbon-rich, phosphogenic shelf depositional system showing broad facies associations, from coastal to deep shelf. This paper presents results of the sedimentologic, petrographic and micro- structural investigation of the phosphogenic system, with special emphasis being placed on the role of deep-water benthic microbial communities in phosphorite formation. The investigation was carried out in an attempt to explore earlier hypotheses suggesting a prominent role of gradient-type microbial mats in focusing phosphogenesis on some ancient organic-rich seafloors. The microbial mat-generated structures were recognized at recurrent levels in the Triassic phosphogenic sequence, which mark local intraformational discontinuities associated with suppressed or halted sedimentation. The horizons with well-defined microbial mat structures show high concentrations of carbonate fluor-apatite (up to 30% P2O5), though their contribution to the phosphorus pool of the phosphogenic facies is subordinate. Other types of phosphate, including pristine and allochthonous peloidal and nodular accumulations, dominate the phosphorite fraction of the Middle Triassic sequence, but these phosphates usually give lower burial phosphorus concentrations in the sediment. The microbial-mat generated phosphorite in the Triassic phosphogenic system of Svalbard is interpreted to have been produced by white filamentous sulphur bacteria that proliferated on sulphidic gradients during periods of substantially lowered depositional rates in the organic-rich shelf environment. These mats provided local depositional systems capable of depositing and significantly concentrating apatite in the sediment, though their development was a supplementary factor promoting seafloor phosphogenesis in the shelf environment. There is no evidence to support earlier presumptions that gradient-type microbial mats acted as an immediate and direct phosphorus source for apatite deposition at the sediment/water interface. It seems more plausible that these mats allocated the apatite concentration close to the interface due to sealing of the sediment surface to phosphate diffusion, and narrowing chemical gradients essential for the phosphorus pumps into the sediment, reactive phosphate buildup and mineral precipitation. Thus, these mats supported development of interface-linked sedimentary collectors of the formational phosphate, which, without the mats, would be partly lost from the sedimentary system or remained dispersed in the fine-grained facies.
Rocznik
Tom
Strony
7--84
Opis fizyczny
Bibliogr. 157 poz., fot., map., rys.
Twórcy
  • Polish Academy of Sciences, Institute of Geological Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • [1]. Abdullah, W. H., 1999. Organic facies variations in the Triassic shallow marine and deep marine shales of central Spitsbergen, Svalbard. Mar. & Petrol. Geol., 16: 467-481.
  • [2]. Baturin, G. N., 1978. Phosphorites in the Ocean (in Russian). Smirnov Inst. Okeanol., Akad. Nauk SSSR, Izd. Nauka, Moscow, 232 pp.
  • [3]. Baturin, G. N., 1982. Phosphorites on the Sea Floor. Origin, Composition and Distribution. Developm. Sedimentol., 33, Elsevier, Amsterdam, 343 pp.
  • [4]. Baturin, G. N. & Bezrukov, P. L, 1979. Phosphorites on the sea floor and their origin. Mar. Geol., 31: 317-332.
  • [5]. Baturin, G. N. & Dubinchuk, V. T., 1979. Microstructures of Oceanie Phosphorites. Atlas of Photomicrographs (in Russian). Izd. Nauka, Moscow, 198 pp.
  • [6]. Berner, R. A., 1970. Sedimentary pyrite formation. Am. Jour. Sci., 268: 1-23.
  • [7]. Berner, R. A., 1981. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Forsch. Miner., 59: 117-135.
  • [8]. Berner, R. A., 1984. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta, 48: 605-615.
  • [9]. Berner, R. A., 1985. Sulphate reduction, organic matter decomposition and pyrite formation. Phil. Trans. Roy. Soc. London, A315: 25-38.
  • [10]. Birkenmajer, K., 1977. Triassic sedimentary formations of the Hornsund area, Spitsbergen. Stud. Geol. Polon., 51: 7-74.
  • [11]. Birkenmajer, K., 1981. The geology of Svalbard, the western part of the Barents Sea and the continental margin of Scandinavia. In: A. E. M. Nairn, M. Churkin, Jr. & F. G. Stehli (Eds.), The Oceanie Basins and Margins, 5: 265-329.
  • [12]. Boudreau, B. P., 1991. Modelling the sulphide-oxygen reaction and associated pH gradients in porewaters. Geochim. Cosmochim. Acta, 55: 145-159.
  • [13]. Bréheret, J.-G., 1991. Phosphatic concretions in black facies of the Aptian—Albian Marnes bleues Formation of the Vocontian basin (SE France), and at Site DSDP 369: evidence of benthic microbial activity. Cretaceous Res., 12: 411-435.
  • [14]. Buchan, S. H., Challinor, A., Harland, W. B. & Parker, J. R., 1965. The Triassic stratigraphy of Svalbard. Norsk Polarinst. Skr., 135: 1-94.
  • [15]. Burnett, W. C., 1977. Geochemistry and origin of phosphorite deposits from off Peru and Chile. Geol. Soc. Amer. Bull., 88: 813-823.
  • [16]. Burnett, W. C., Veeh, H. H. 84 Soutar, A., 1980. U-series, oceanographic and sedimentary evidence in support of recent formation of phosphate nodules off Peru. In: Y. K. Bentor (Ed.), Marine Phosphorites. Geochemistry, Occurrence, Genesis. Soc. Econ. Paleontol. & Mineral., Spec. Publ., 29: 61-71.
  • [17]. Canfield, D. E., 1989. Reactive iron in marine sediments. Geochim. Cosmochim. Acta, 53: 619-632.
  • [18]. Chambers, L. A. 84 Trudinger, P. A., 1979. Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiol. Jour., 1: 249-293.
  • [19]. Carrasco, F. D., Gallardo, V. A. 84 Baltazar, M., 1999. The structure of the benthic macrofauna collected across a transect at the central Chile shelf and relationship with giant sulfur bacteria Thioploca spp. mats. Cahiers Biol. Mar., 40: 195-202.
  • [20]. Christensen, C. J., Gorsline, D. S., Hammond, D. E. & Lund, S. P., 1994. Non-annual laminations and expansion of anoxic basin-floor conditions in Santa Monica basin, California Borderland, over the past four centuries. Mar. Geol., 116: 399-418.
  • [21]. Cook, P. J. & Shergold, J. H., 1986. Proterozoic and Cambrianphosphorites - an introduction. In: P. J. Cook & J. H. Shergold (Eds), Phosphate Deposits of the World: Vol. I. Proterozoic and Cambrian Phosphorites. Cambridge University Press, Cambridge: 1-8.
  • [22]. Dahanayake, K. 84 Krumbein, W. E., 1985. Ultrastructure of a microbial mat-generated phosphorite. Minerał. Deposita, 20: 260-265.
  • [23]. Dallmann, W. K., Birkenmajer, K., Hjelle, A., Mork, A., Ohta, Y., Salvitisen, O. & Winsnes, T. S., 1993. Geological Map of Svalbard 1:100,000. Sheet C13 Sørkapp. Text Part. Norsk Polarinst., Oslo, 73 pp.
  • [24]. Detterman, R. L., 1989. Triassic phosphate deposits, north-eastern Alaska, USA. In: A. J. G. Notholt, R. P. Sheldon & D. F. Davidson (Eds), Phosphate Deposits of the World: Vol. 2. Phosphate Rock Resources. Cambridge University Press, Cambridge: 14-17.
  • [25]. Detterman, R. L., Reiser, H. N., Brosgć, W. P. & Dutro, J. T., Jr., 1975. Post-Carboniferous stratigraphy, northern Alaska. U.S. Geol. Sury. Prof. Paper, 886, 46 pp.
  • [26]. Dill, H. & Kemper, E., 1990. Crystallographic and chemical variations during pyritization in the upper Barremian and lower Aptian dark claystones from the Lower Saxonian Basin (NW Germany). Sedimentology, 37: 427-443.
  • [27]. Eganov, E. A., 1988. Phosphate Deposition and Stromatolites (in Russian). Akad. Nauk SSSR, Inst. Geol. & Geofiz. Novosibirsk, 62 pp.
  • [28]. Eganov, E. A., Zhegadllo, E. A. & Sholnik, E. L., 1997. Ultramicrostructures of phosphate pellets of microgranular phosphorites from the standard basin Karatau (Kazakhstan) (in Russian). Geol. & Geofiz., 38: 696-700.
  • [29]. Egorov, A. Yu. & Baturin, G. N., 1987. Phosphorites in Triassic deposits of the Novosibirsk Islands (in Russian). Dokl. Akad. Nauk SSSR, 297: 921-925.
  • [30]. El Faleh, E. M., 1988. Lés méchanismes de synthése de l'apatite par activité bacteriénne: Rôle et comportement de quelques éléments minéraux: Application aux phosphates sédimentaires. Ph.D. Thesis, University Louis-Pasteur, Strasbourg, 230 pp.
  • [31]. El-Kammar, A. M. 84 Nyswther, E., 1980. Petrography and mineralogy of phosphatic sediments, Svalbard. Norsk Polarinst. Skr., 172: 169-181.
  • [32]. El-Kammar, A. M., Robins, C. B. & Nysrether, E., 1983. Geochemistry of sedimentary apatite from Svalbard. Chem. Erde, 42: 131-143.
  • [33]. Embry, A. F., 1988. Triassic sea-level changes: Evidence from the Canadian Arctic Archipelago. In: C. K. Wilgus, B. S. Hastings, H. Posamentier, J. Van Wagoner, C. A. Ross & C. G. St. C. Kendall (Eds), Sea-Level Changes: An 1ntergated Approach. Soc. Econ. Paleontol. & Mineral., Spec. Publ., 42: 249-259.
  • [34]. Fenchel, T. & Bernard, C., 1995. Mats of colourless sulphur bacteria. 1. Major microbial processes. Mar. Ecol., Progr. Ser., 128: 161-170.
  • [35]. Ferdelman, T. G., Lee, C., Pantija, S., Harder, J., Bebout, B. M. & Fossig, H., 1997. Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile. Geochim. Cosmochim. Acta, 61: 3065-3079.
  • [36]. Flood, B., Nagy, J. & Winsnes, T. S., 1971. The Triassic succession of Barentsoya, Edgeoya, and Hopen (Svalbard). Norsk Polarinst. Medd., 100: 1-24.
  • [37]. Föllmi K. B., 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev., 40: 55-124.
  • [38]. Föllmi, K. B. & Garrison, R. E., 1991. Phosphatic sediments, ordinary or extraordinary deposits? The example of the Miocene Monterey Formation (California). In: D. W. Mtiller, J. A. McKenzie & H. Weissert (Eds), Controversies in Modern Geology. Academic Press: 55-84.
  • [39]. Föllmi, K. B., Garrison, R. E. 8r Grimm, K. A., 1991. Stratification in phosphatic sediments: Illustrations from the Neogene of California. In: G. Einsele, W. Ricken & A. Seilacher (Eds), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin: 492-507.
  • [40]. Forsberg, A. & Bjoray, M., 1983. A sedimentological and organic geochemical study of the Botneheia Formation, Svalbard, with special emphasis on the effects of weathering on the organic matter in shales. In: M. Bjoroy, P. Albrecht, C. Cornford et al. (Eds), Advances in Organic Geochemistry 1981. Wiley, Chichester: 60-68.
  • [41]. Froelich, P. N., Arthur, M. A., Burnett, W. C., Deakin, M., Hensley, V., Jahnke, R., Kaul, L., Kim, K.-H., Roe, K., Soutar, A. & Vathakanon, C., 1988. Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precipitation. Mar. Geol., 80: 309-343.
  • [42]. Gächter, R. & Meyer, J. S., 1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiol., 253: 103-121.
  • [43]. Gächter, R., Meyer, J. S. 8r Mares, A., 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr., 33: 1542-1558.
  • [44]. Gallardo, V. A., 1977. Large benthic microbial communities in sulphide biota under Peru-Chile Subsurface Countercurrent. Nature, 268: 331-332.
  • [45]. Gallardo, V. A., Klingelhoeffer, E., Arntz, W. & Graco, M., 1998. First report of the bacterium Thioploca in the Benguela ecosystem off Namibia. Jour. Mar. Biol. Assoc. UK, 78: 1007-1010.
  • [46]. Garrison, R. E. & Kastner, M., 1990. Phosphatic sediments and rocks recovered from the Peru margin during ODP Leg 112. Proc. ODP, Sci. Results, 112: 111-134.
  • [47]. Garrison, R. E., Kastner, M. & Kolodny, Y., 1987. Phosphorites and phosphatic rocks in the Monterey Formation and related Miocene units, coastal California. In: R. V. Ingesoll & W. G. Ernst (Eds), Cenozoic Basin Development of Coastal California. Rubey Vol. VI. Prentice-Hall, Englewood Cliffs, New Jersey: 382-406.
  • [48]. Garrison, R. E., Kastner, M. & Reimers, C. E.., 1990. Miocene phosphogenesis in California. In: W. C. Burnett & S. R. Riggs (Eds), Phosphate Deposits of the World: Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 285-299.
  • [49]. Glenn, C. R., 1990. Pore water, petrologie and stable carbon isotopic data bearing on the origin of Modern Peru margin phosphorites and associated authigenic phases. In: W. C. Burnett & S. R. Riggs (Eds), Phosphate Deposits of the World: VoL 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 46-61.
  • [50]. Glenn, C. R. & Arthur, M. A., 1988. Petrology and major element geochemistry of Peru margin phosphorites and associated diagenetic minerals: Authigenesis in modern organic-rich sediments. Mar. Geol., 80: 231-267.
  • [51]. Glenn, C. R. & Arthur, M. A., 1990. Anatomy and origin of a Cretaceous phosphorie-greensand giant, Egypt. Sedimentology, 37: 123-154.
  • [52]. Glenn, C. R., Fiillmi, K. F., Riggs, S. R., Baturin, G. N., Grimm, K. A., Trappe, J., Abed, A. M., Galli-Olivier, C., Garrison, R. E., Ilyin, A. V., Jehl, C., Rohrlich, V., Sadagah, R. M. Y., Schidlowski, M., Sheldon, R. E. & Siegmund, H., 1994. Phosphorus and phosphorites: Sedimentology and environmental concerns. Eclogae geol. Hely., 87: 747-788.
  • [53]. Gulbrandsen, R. A., 1970. Relation of carbon dioxide content of apatite of the Phosphoria Formation to regional facies. U.S. Geol. Survey Prof Paper, 700B: B9-B13.
  • [54]. Gulbrandsen, R. A., Robertson, C .E. & Neil, S. T., 1984. Time and crystallization of apatite in seawater. Geochim. Cosmochim. Acta, 48: 213-218.
  • [55]. Gunnars, A. & Blomqvist, S., 1997. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions - an experimental comparison of freshwater and brackish-marin systems. Biogeochemistry, 37: 203-226.
  • [56]. Håkansson, E. & Stemmerik, L., 1984. Wandel Sea Basin - The North Greenland equivalent to Svalbard and the Barents Shelf. In: A. M. Spencer et al. (Eds), Petroleum Geology of the North European Margin. Nor. Pet. Soc., Graham & Trotman, London: 97-107.
  • [57]. Habicht, K. S. & Canfield, D. E., 1997. Sulphur isotope fractionation during bacterial sulphate reduction in organic-rich sediments. Geochim. Cosmochim. Acta, 61: 5351-5361.
  • [58]. Hagen, K. D. & Nelson, D. C., 1997. Use of reduced sulfur compounds by Beggiatoa spp.: Enzymology and physiology of marine and freshwater strains in homogeneous and gradient cultures. App. Environ. Microbiol., 63: 3957-3964.
  • [59]. Harland, W. B., 1997. The Geology of Svalbard. Geol. Soc. London Mem., 17,521 pp.
  • [60]. Harland, W. B., Gaskell, B. A., Heafford, A. P., Lind, E. K. & Perkins, P. J., 1984. Outline of Arctic post-Silurian continental displacements. In: A.M. Spencer et al. (Eds), Petroleum Geology of the North European Margin. Nor. Pet. Soc., Graham & Trotman, London: 137-148.
  • [61]. Heckel, P. H., 1977. Origin of phosphatic black shales in Pennsylvanian cyclothems of mid-continent North America. Am. Assoc. Petrol. Geol. Bull., 61: 10450-1068.
  • [62]. Heijs, S. K., Jonkers, H. M., van Gemerden, H., Schaub, B. E. M. & Stal, L. J., 1999. The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) - the relative importance of chemical and biological processes. Estuarine Coastal Shelf Sci., 49: 21-35.
  • [63]. Henrichs, S. M. & Farrington, J. W., 1984. Peru upwelling region sediments near 15°S. 1. Remineralization and accumulation of organic matter. Limnol. Oceanogr., 29: 1-19.
  • [64]. Hinman, N. W. & Schwartz, D. E., 1990. Lithologic and diagenetic sequences of the Monterey Formation, Molino Field, offshore Santa Barbara, California. In: M. A. Keller & M. K. McGowen (Eds), Miocene and Oligocene Petroleum Reservoirs of the Santa Maria and Santa Barbara - ventura Basins, California. SEPM Core Workshop 14. San Francisco: 271-314.
  • [65]. Hirschler, A., 1990. Étude de rintervention des microorganismes dans la formation de I 'apatite. Ph.D. Thesis. Université Louis-Pasteur, Strasbourg, 142 pp.
  • [66]. Hirschler, A., Lucas, J. & Hubert, J.-C., 1990a. Bacterial involvement in apatite genesis. FEMS Microbiol. Ecol., 73: 211-220.
  • [67]. Hirschler, A., Lucas, J. & Hubert, J.-C., 1990b. Apatite genesis: A microbially induced or biologically controlled formation process? Geomicrobiol. Jour., 7: 47-57.
  • [68]. Huettel, M., Forster, S., Kloser, S. & Fossing, H., 1996. Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. App. Environ. Microbiol., 62: 1863-1872.
  • [69]. Ilyin, A. V., 1994. Cenomanian phosphorites in the former Soviet Union. Sediment. Geol., 94: 109-127.
  • [70]. Jarvis, I., Burnett, W. C., Nathan, Y., Almbaydin, F. S. M., Attia, A. K. M., Castro, L. N., Flicoteaux, R., Hilmy, M. E., Husain, V., Qutawnah, A. A., Serjani, A. & Zanin, Y. N., 1994. Phosphorite geochemistry: State-of-the art and environmental concerns. Eclogae geod. Hely., 87: 643-700.
  • [71]. Jørgensen, B. B., 1982. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. PNI. Trans. Roy. Soc. London, B298: 543-561.
  • [72]. Jørgensen, B. B. & Gallardo, V. A., 1999. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol., 28: 301-313.
  • [73]. Jørgensen, B. B. & Revsbech, N. P., 1983. Colorless sulfur bacteria, Beggiatoa spp., and Thiovulum spp., in 02 and H2S microgradients. App. Environ. Microbiol., 45: 1261-1270.
  • [74]. Kidder, D. L., 1985. Petrology and origin of phosphate nodules from the Midcontinent Pennsylvanian epicontinental sea. Jour. Sediment. Petrol., 55: 809-816.
  • [75]. Krajewski, K. P., 1981a. Phosphatic microstromatolites in the High-Tatric Albian limestones of the Polish Tatra Mountains. Buli. Acad. Pol. Sci., Terre, 29: 175-183.
  • [76]. Krajewski, K. P., 1981b. Pelagic stromatolites from the High-Tatric Albian limestones in the Tatra Mountains. Kwart. Geol., 25: 731-759.
  • [77]. Krajewski, K. P., 1983. Albian pelagic phosphate-rich macrooncoids from the Tatra Mts, Poland. In: T. M. Peryt (Ed.), Coated Grains. Springer-Verlag, Berlin: 344-357.
  • [78]. Krajewski, K. P., 2000a. Isotopic composition of apatite-bound sulphur in the Triassic phosphogenic facies in Svalbard. Stud. Geol. Polon., 116: 85-109.
  • [79]. Krajewski, K. P., 2000b. Diagenetic recrystallization and neoformation of apatite in the Triassic phosphogenic facies in Svalbard. Stud. Geol. Polon., 116: 111-137.
  • [80]. Krajewski, K. P., 2000c. Phosphorus concentration and organic carbon preservation in the Blanknuten Member (Botneheia Formation, Middle Triassic), Sassenfjorden, Spitsbergen. Stud. Geol. Polon., 116: 139-173.
  • [81]. Krajewski, K. P., 2000d. Phosphorus and organic carbon reservoirs in the Bravaisberget Formation (Middle Triassic), Hornsund, Spitsbergen. Stud. Geol. Polon., 116: 175-209.
  • [82]. Krajewski, K. P., Van Cappellen, P., Trichet, J., Kuhn, O., Lucas, J. Martin-Algarra, A., Prévôt, L., Tewari, V. C., Gaspar, L., Knight, R. I. & Lamboy, M., 1994. Biological processes and apatite formation in sedimentary environments. Eclogae geol. Hely., 87: 701-745.
  • [83]. Krajewski, K. P., Leśniak, P. M., Łącka, B. & Zawidzki, P., in press. Origin of phosphatic stromatolites in the Upper Cretaceous condensed sequence of the Polish Jura Chain. Sediment. Geol. Lamboy, M., 1990. Microstructures of a phosphatic crust from the Peruvian continental margin: phosphatized bacteria and associated phenomena. Oceanol. Acta, 13: 439-451.
  • [84]. Leith, T. L., Weiss, H. M., Mork, A., Arhus, N., Elvebakk, G., Embry, A. F., Brooks, P. W., Stewart, K. R., Pchelina, T. M., Bro, E. G., Verba, M. L., Danyushevskaya, A. & Borisov, A. V., 1992. Mesozoic hydrocarbon source-rocks of the Arctic region. In: T. O. Vorren, E. Bergsager, O. A. Dahl-Stamnes, E. Holter, B. Johansen, E. Lie & T. B. Lund (Eds), Arctic Geology and Petroleum Potential. NPF Spec. Publ. 2. Elsevier, Amsterdam: 1-25.
  • [85]. Lock, B. E., Pickton, C. A. G., Smith, D. G., Batten, D. J. & Harland, W. B., 1978. The geology of Edgeoya and Barentsoya, Svalbard. Norsk Polarinst. Skr., 168: 7-64.
  • [86]. Logan, G. A., Calver, C. R., Gorjan, P., Summons, R. E., Hayes, J. M. & Walter, M. R., 1999. Terminal Proterozoic mid-shelf benthic microbial mats in the Central Superbasin and their environmental significance. Geochim. Cosmochim. Acta, 63: 1345-1358.
  • [87]. Loughman, D. L., 1984. Phosphate authigenesis in the Aramachay Formation (Lower Jurassic) of Peru. Jour. Sediment. PetroL, 54: 1147-1156.
  • [88]. Lucas, J. & Prévôt, L., 1981. Synthése de l'apatite a partir de matiére organique phosphorée (ARN) et de calcite par voie bactérienne. C.R. Acad. Sci. Paris II, 292: 1203-1208.
  • [89]. Lucas, J. & Prévôt, L., 1984. Synthéćse de l'apatite a partir de matiére organique et de divers carbonates de calcium dans des eaux douce et marine naturelles. Chem. Geol., 42: 101-118.
  • [90]. Lucas, J. & Prévôt, L., 1985. The synthesis of apatite by bacterial activity: Mechanism. Sci. Géol. Mbn. Strasbourg, 77: 83-92.
  • [91]. Maughan, E. K., 1980. Relation of phosphorite, organic carbon, and hydrocarbons in the Permian Phosphoria Formation, western United States of America. In: Gćologie Comparée des Gisements de Phosphates et de Pétrole. Colloq. Internat. Orlćans, 6-7 Nov. 1979. Doc. BRGM, 24: 63-91.
  • [92]. McManus, J., Berelson, W. M., Coale, K. H., Johnson, K. S. & Kilgore, T. E., 1997. Phosphorus regeneration in continental margin sediments. Geochim. Cosmochim. Acta, 61: 2891-2907.
  • [93]. Mishustina, I. E., 1973. Ultramicroscopic formations in diatomaceous muds of South Western African shelf (in Russian). Izv. Akad. Nauk SSSR, Ser. BioL, 3: 272-274.
  • [94]. Mitrov, Yu. V., Zanin, Yu. N., Krasilnikova, N. A., Gurevich, B. G., Krivoputskaya, L. M., Krasilnikova, I. G. & Sukhov, Yu. K. M., 1987. Ultrastructures of Phosphorites (Atlas of Pictures) (in Russian). Izd. Nauka. Moscow, 233 pp.
  • [95]. Morita, R. Y., Hurriaga, R. & Gallardo, V. A., 1981. Thioploca: Methylotroph and significance in the food chain. Kieler Meeresforsch., 5: 384-389.
  • [96]. Mørk, A. & Bjorøy, M., 1984. Mesozoic source rocks on Svalbard. In: A.M. Spencer et al. (Eds), Petroleum Geology of the North European Margin. Nor. Pet. Soc., Graham & Trotman, London: 371-382.
  • [97]. Mørk, A. & Elvebakk, G., 1999. Lithological description of subcropping Lower and Middle Triassic rocks from the Svalis Dome, Barents Sea. Polar Res., 18: 83-104.
  • [98]. Mørk, A., Knarud, R. & Worsley, D., 1982. Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In: A. F. Embry & H. R. Balkwill (Eds), Arctic Geology and Geophysics. Can. Soc. Petrol. Geol. Mem., 8: 371-398.
  • [99]. Mørk, A., Embry, A. F. & Weitschat, W., 1989. Triassic transgressive-regressive cycles in the Sverdrup Basin, Svalbard, and the Barents Shelf. In: J. D. Collinson (Ed.), Correlation in Hydrocarbon Exploration. Graham & Trotman, London: 113-130.
  • [100]. Mørk, A., Dallmann, W. K., Dypvik, H., Johannessen, E. P., Larssen, G. B., Nagy, J., Nottvedt, A., Olaussen, S., Nelina, T. M. & Worsley, D., 1999. Mesozoic lithostratygraphy. In: W.K. Dallmann (Ed.), Lithostratigraphic Lexicon of Svalbard. Review and Recommendations for Nomenclature Use. Upper Palaeozoic to Quaternary Bedrock. Norsk Polarinst., Tromso: 127¬214.
  • [101]. Nathan, Y. & Sass, E., 1981. Stability relation of apatites and calcium carbonates. Chem. Geol., 34: 103-111.
  • [102]. Nelson, D. C. & Jannasch, H. W., 1983. Chemoautotrophic growth of marine Beggiatoa in sulphide-gradient cultures. Arch. Microbiol., 136: 262-269.
  • [103]. Nelson, D. C., Revsbech, N. P. & Jorgensen, B. B., 1986. Microoxic-anoxic niche of Beggiatoa spp.: Microelectrode survey of marine and freshwater strains. Appl. Environ. Microbiol., 52: 161-168.
  • [104]. Novozhilova, M. I. & Baturin, G. N., 1973. Some data on bacterial microflora of sediments in the South-Eastern Atlantic (in Russian). Trudy Insi. Okeanol., Akad. Nauk SSSR, 95: 268-273.
  • [105]. Otte, S., Kuenen, J. G., Nielsen, L. P., Pearl, H. W., Zopfi, J., Schulz, H. N., Teske, A., Strotmann, B., Gallardo, V. A. & Jorgensen, B. B., 1999. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. App. Environ. Microbiol., 65: 3148-3157.
  • [106]. Paproth, E. & Zimmerle, W., 1980. Stratigraphic position, petrography, and depositional environment of phosphorites from the Federal Republic of Germany. Meded. Rijsk Geol. Dienst, 32: 81-95.
  • [107]. Parrish, J. T. & Curtis, R. L., 1982. Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr., Palaeoclimatol., Palaeoecol., 40: 31-66.
  • [108]. Prévôt, L., 1990. Geochemistry, petrography, genesis of Cretaceous-Eocene phosphorites. The Gannutour Deposit (Morocco): A Type Example. Móni Soc. Geol. France, 158,232 pp.
  • [109]. Prévôt, L. & Lucas, J., 1986. Microstructure of apatite-replacing carbonate in synthesized and natural samples. Jour. Sediment. Petrol., 56: 153-159.
  • [110]. Prévôt, L., El Faleh, E. M. & Lucas, J., 1989. Details on synthetic apatites formed though bacterial mediation; mineralogy and chemistry of the products. Sci. GćoL Bull. Strasbourg, 42: 237-254.
  • [111]. Raiswell, R., 1982. Pyrite texture, isotopic composition and the availability of iron. Am. Jour. Sci., 282: 1244-1263.
  • [112]. Reimers, C. E., Kastner, M. & Garrison, R. E., 1990. The role of bacterial mats in phosphate mineralization with particular reference to Monterey Formation. In: W. C. Burnett & S. R. Riggs (Eds), Phosphate Deposits of the World: Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 300-311.
  • [113]. Reimers, C. E., Ruttenberg, K. C., Canfield, D. E., Christiansen, M. B. & Martin, J. B., 1996. Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochim. Cosmochim. Acta, 60: 4037-4057.
  • [114]. Riggs, S. R., 1979. Petrology of the Tertiary phosphorite system of Florida. Econ. Geol., 74: 195-220.
  • [115]. Roden, E. E. & Edtnonds, J. W., 1997. Phosphate mobilization in iron-rich anaerobie sediments: Microbial Fe(III) oxide reduction versus iron-sulfide formation. Archiv fair Hydrobiologie, 139: 347-378.
  • [116]. Rosenberg, R., Arnitz, W. E., De Flores, E. C., Flores, L. A., Carbajal, G., Finger, I. & Tatazona, J., 1983. Bentos biomass and oxygen deficiency in the upwelling system off Peru. Jour. Mar. Res., 41: 263-279.
  • [117]. Sandstrom, M. W., 1990. Organic matter in Modern marine phosphatic sediments from the Peruvian continental margin. In: W. C. Burnett & S. R. Riggs (Eds), Phosphate Deposits of the World: Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 33-45.
  • [118]. Schaffer, G., 1986. Phosphate pumps and shuttles in the Black Sea. Nature, 321: 515-517.
  • [119]. Schieber, J., 1986. The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins. Sedimentology, 33: 521-536.
  • [120]. Schieber, J., 1999. Microbial mats in temgenous clastics: The challange of identification in the rock record. Palaios, 14: 2-12.
  • [121]. Schuffert , J. D., Kastner, M., Emanuele, G. & Jahnke, R. A., 1990. Carbonate-ion substitution in francolite: A new equation. Geochim. Cosmochim. Acta, 54: 2323-2328.
  • [122]. Schuffert , J. D., Kastner, M. & Jahnke, R. A., 1998. Carbon and phosphorus burial associated with modern phosphorite formation. Mar. Geol , 146: 21-31.
  • [123]. Schulz, H. N., Jorgensen, B. B., Fossing, H. A. & Ramsing, N. B., 1996. Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp., off the coast of Chile. App. Environ. Microbiol., 62: 1855-1862.
  • [124]. Schulz, H. N., Brinkhoff, T., Ferdelman, T. G., Marine, M. H., Teske, A. & Jorgensen, B. B., 1999. Dense population of a giant sulfur bacterium in Namibian shelf sediments. Science, 284: 493-495.
  • [125]. SenGupta, B. K., Platon, E., Bernhard, J. M. & Aharon, P., 1997. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico slope. Jour. Foraminiferal Res., 27: 292-300.
  • [126]. Sheldon, R. P., 1981. Ancient marine phosphorites. Ann. Rev. Earth Planet. Sci., 9: 251-284.
  • [127]. Slansky, M., 1980. Géologie des phosphates sédimentaires. 1Wm. BRGM, 114,92 pp.
  • [128]. Slomp, C. P., Epping, E. H. G., Helder, W. & VanRaaphorst, W., 1996. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. Jour. Mar. Res., 54: 1179-1205.
  • [129]. Soudry, D., 1987. Ultra-fine structures and genesis of the Campanian Negev high-grade phosphorites (southern Israel). Sedimentology, 34: 641-660.
  • [130]. Soudry, D. & Champetier, Y., 1983. Microbial processes in the Negev phosphorites (southern Israel). Sedimentology, 30: 411-423.
  • [131]. Soudry, D. & Lewy, Z., 1988. Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, Southern Israel). Palaeogeogr., Palaeoclimatol., Palaeoecol., 64: 15-34.
  • [132]. Soudry, D. & Lewy, Z., 1990. Omission-surface incipient phosphate crusts on early diagenetic calcareous concretions and their possible origin, Upper Campanian, southern Israel. Sediment. Geol., 66: 151-163.
  • [133]. Soutar, A. & Crill, P. A., 1977. Sedimentation and climatic patterns in the Santa Barbara Basin during the 19th and 29th centuries. Geol. Soc. Am. Bull., 88: 1161-1172.
  • [134]. Steel, R. J. & Worsley, D., 1984. Svalbard's post-Caledonian strata - An atlas of sedimentational patterns and palaeogeographic evolution. In: A.M. Spencer et al. (Eds), Petroleum Geology of the North European Margin. Nor. Pet. Soc., Graham & Trotman, London: 109-135.
  • [135]. Strohl, W. R., 1989. Beggiatoaceae. In: P. M. Bryant, N. Pfening & J. G. Holt (Eds), Bergey's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore: 2089-2106.
  • [136]. Suess, E., 1981. Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris. Geochim. Cosmochim. Acta, 45: 577-588.
  • [137]. Thamdrup, B. & Canfield, D. E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol. Oceanogr., 41: 1629-1650.
  • [138]. Toran, L. & Harris, R. F., 1989. Interpretation of sulfur and oxygen isotopes in biological and abiological oxidation. Geochim. Cosmochim. Acta, 53: 2341-2348.
  • [139]. Tozer, E. T. & Parker, J. R., 1968. Notes on the Triassic biostratigraphy of Svalbard. Geol. Mag., 105: 526-542.
  • [140]. Trappe, J., 1998. Phanerozoic Phosphorite Depositional Systems. Lecture Notes in Earth Sci., 76. Springer-Verlag, Berlin, 316 pp.
  • [141]. Van Cappellen, P., 1991. The Formation of Marine Apatite: A Kinetic Study. Ph.D. Thesis. Yale University.
  • [142]. Van Cappellen, P. & Berner, R. A., 1988. A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments: apatite precipitation. Am. Jour. Sci., 288: 289-333.
  • [143]. Van Cappellen, P. & Berner, R. A., 1991. Fluorapatite crystal growth from modified seawater solutions. Geochim. Cosmochim. Acta, 55: 1219-1234.
  • [144]. Weitschat, W., 1986. Phosphatisierte Ammonoideen aus der Mittleren Trias von Central-Spitzbergen. Mitt. Geol.-Pakiont. Inst. Univ. Hamburg, 61: 249-279.
  • [145]. Weitschat, W. & Bandel, K., 1991. Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Pakiont. Z. Stuttgart, 65: 269-303.
  • [146]. Weitschat, W. & Dagys, A. S., 1989. Triassic biostratigraphy of Svalbard and a comparison with NE-Siberia. Mitt. Geol. Pakiont. Inst. Univ. Hamburg, 68: 179-213.
  • [147]. Weitschat, W. & Lehmann, U., 1983. Stratigraphy and ammonoids from the Middle Triassic Botneheia Formation (Daonella shales) of Spitsbergen. Mitt. Geol. Pakiont. Inst. Univ. Hamburg, 54: 27-54.
  • [148]. Wiessner, W., 1981. The Family Beggiatoaceae. In: M. P. Starr, H. Stolp, H. G. Trilper, A. Balows & H. G. Schlegel (Eds), The Prokaryotes. A Handbook of Habitats, Isolation, and Identification of Bacteria. Vol. I. Springer-Verlag, New York: 380-389.
  • [149]. Wilkin, R. T. & Barnes, H. L., 1997. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta, 61: 323-339.
  • [150]. Williams, L. A., 1984. Subtidal stromatolites in Monterey Formation and other organic-rich rocks as suggested contributors to petroleum formation. Am. Assoc. Petrol. Geol. Bull., 68: 1879-1893.
  • [151]. Williams , L. A. & Reimers, C., 1983. Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: Preliminary report. Geology, 11: 267-269.
  • [152]. Winsnes, T. S., 1986. Bedrock Map of Svalbard and Jan Mayen 1:1000 000. Norsk Polarinstitutt Temakart Nr. 3. Norsk Polarinst., Oslo.
  • [153]. Worsley, D., 1986. The Geological History of Svalbard. Evolution of an Arctic archipelagu. Den Norske Stats Oljeselskap, Stavanger, Norway, 121 pp.
  • [154]. Yamamoto-Ikemoto, R., Matsui, S., Komori, T. & Bosque-Hamilton, E. K., 1998. Interactions between filamentous sulfur bacteria, sulfate reducing bacteria and poly-P accumulating bacteria in anaerobic-oxic activated sludge from a municipal plant. Water Sci. Technol., 37: 599-603.
  • [155]. Yanshin, A. L. & Zharkov, M. A., 1986. Phosphorus and Potassium in Nature (in Russian). Trudy Inst. Geol. & Geofiz., Izd. Nauka, Novosibirsk, 189 pp.
  • [156]. Zanin, Yu. N. & Letov, S. V., Letov, S. V., Krasilnikova, N. A. & Mitrov, Yu. M., 1985. Phosphatized bacteria from Cretaceous phosphorites of East-European Platform and Paleocene phosphorites of Morocco. Sci. Geol. Mém. Strasbourg, 77: 79-81.
  • [157]. Zanin, Yu. N., Gorlenko, V. M., Mitrov, Yu. V., Krasilnikova, N. A. & Letov, S. V., 1987. Bacteriomorphous structures in nodular and granular phosphorites (in Russian). Geol. & Geofiz., 2: 43-49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0015-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.