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Abstract

The paper describes some special solutions of the long water waves theory proposed

by Wilde. The wave equation is derived with the help of a variational formulation of

the problem with the Lagrangian being the difference between the kinetic and poten-

tial energies. In order to look for travelling wave solutions the simple transformation

� D x � ct is made. The solutions have been found in the same way as in the KdV

equation. Solutions for different wave amplitudes are presented in the paper. The

special cases of solutions are solitary waves. It is prooved that bounded solutions of

an equation can represent periodic or solitary waves and both length and velocity of

waves increase when the height of waves increases.
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1. Introduction

An important part of the theory of water waves deals with long waves, the length

of which is much greater than the water depth. Accurate knowledge of the motion

of long waves is essential for extensive application in coastal engineering. Most

applications are based on the assumption that the wave slope is small. This as-

sumption is not valid for waves of finite steepness, those having neither sinusoidal

nor cnoidal form. In shallow water of uniform depth a wave can propagate without

changing, when dispersional and non-linear effect attain equilibrium. It is clear

that the shape of wave depends on the governing equation. For instance, solitary

waves, which can be obtained from either Bussinesq, or Korteweg-deVries equa-

tions are different. In this paper some exact solutions of the long wave theory,

proposed by Wilde (2001) are presented.
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2. Formulation of the Problem

Let us consider a periodic two-dimensional motion of an infinite layer of fluid.
In order to describe the motion, let us introduce such Cartesian co-ordinate sys-
tem in which vertical and horizontal coordinates denote particles at rest. It is
assumed that the fluid for the time t � 0 is at rest and the corresponding particle
co-ordinates are named X; Y.�H � Y � 0/, where H denotes depth of water, and
free surface elevation is described as Y D 0. The motion of the fluid is described
by the mapping of the names into the positions occupied by the points at time t .
Thus, the mapping can be given as:

x D x.X; Y; t/ D X C u.X; t/;

y D y.X; Y; t/ D Y C w.X; t/
Y

H
;

(1)

where u and w are components of the displacement vector.
The incompressibility condition leads to the following relation:

w.X; t/ D
�HuX.X; t/

1 C uX.X; t/
: (2)

Equation (2) describes also the free surface elevation. Wilde (2000) has derived
the differential equation of the problem by means of a variational formulation in
Lagrangian variables. The equation reads:
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(3)

Let as assume that the solution has the form:

u.X; t/ D u.X � ct/ D u.�/; (4)

where � D X � ct represent the phase, c – velocity of wave.
Substituting description (4) into equation (3) gives:

�c2u 00.�/C
g Hu 00.�/

.1 C u 0.�//3
C

C
1

3
H2

�

10c2u 00.�/3

.1 C u 0.�//6
�

8c2u 00.�/u.3/.�/

.1 C u 0.�//5
C

3c2u.4/.�/

.1 C u 0.�//4

�

D 0:

(5)

Let us introduce the new function �.�/:



Certain Solutions of Periodic Long Waves with Non-Linear Dispersion 309

�.�/ D �H
u 0.�/

1 C u 0.�/
: (6)

From equation (6) the following relations can be obtained:

u 0.�/ D �
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H C �.�/
; (7)
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; (8)
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Substituting relations (6–10) into equation (5) one obtains:
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(11)

The equation can be integrated over � :

�
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�
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From this equation the following relation results:
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The above equation can be interpreted as the equation of a non-linear oscil-
lator with non-linear potential energy U.�/ and unit mass:

�00.�/ D �
@U.�/

@�
; (14)

where
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(15)

In equation (15) the constant of integration is assumed to be zero.

For a conservative system, the sum of kinetic and potential energy is constant
and thus we have:

� 0.�/2

2
C U.�.�// D E or

� 0.�/2

2
D E � U.�.�// (16)

where U.�/ is given by (14).

The typical graph of potential energy is shown in Fig. 1.

Fig. 1. Potential energy as a function of �

As we are interested in the bounded solution of equation (16), the constant
E must satisfy the inequality E3 � E � E1 which is illustrated in Fig. 1. When
E D E3, water stays at rest and when E D E1, the wave has a maximum amplitude
of hwave D �B � �A. In this case, solution of equation (16) represents a soliton.

The difference between the total and potential energies can be read as (Fig. 1):

E � U.�/ D .� � �1/.�2 � �/ .�/; �1 < �2: (17)

Now, let us introduce a new variable �.�/:

�.�/ D
�1 C �2

2
�
�2 � �1

2
cos.�.�// D Þ � þ cos.�.�//: (18)
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It is easy to show that:

�.0/ D �1; �.³/ D �2; (19)

.� � �1/.�2 � �/ D þ2 sin2.�.�//; (20)

�0.�/ D þ2 sin2.�.�//�0.�/2 (21)

and equation (16) assumes the form:

�0.�/2 D 2 .Þ � þ cos .�.�/// : (22)

In the simplest case, when total energy E is slightly greater than E3, i.e.
E � E3

¾D a2, a − 1, the potential energy can be approximated by the quadratic
function:

U.�/ D
1

2
P�2; (23)

where P D @2U
@�2

þ

þ

þ

�D0
.

In this case, from the physical point of view, the potential energy must have
its minimum at � = 0, i.e.

@U.�/

@�
D 0 and (24)

@2U.�/

@�2
> 0: (25)

From equations (15) and (23–25) it results that A D c2, c2 < g H, and the
potential energy reads:

U.�/ D
3

2c2.H C �/2

�

g H3 C c2 H2 C 2g H2� C 2c2 H� C 2g H�2 C g�3
�

: (26)

When c2 D g H, the waves are non-dispersive and a steady solution of the
linearized equation (3) does not exist.

Using relations (23) and (25) after simple manipulations we obtain:

P D
3.g H=c2 � 1/

H2
: (27)

The solution of the potential function can be found from equation (16). Let us
consider now the case of the angle variable described in equation (18). Equation
(16) assumes the form
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� 0.�/2 D P.�.�/� a/.a � �.�//: (28)

Using the angle variable �:

� 0.�/2 D P (29)

the solution of the equation may be expressed as �.�/ D
p

P� . Now, from equa-
tion (18) we have:

�.�/ D �.X � ct/ D a cos
�p

P.X � ct/
�

: (30)

Usually
p

P is denoted as k, i.e.:

k D

s

3.g H=c2 � 1/

H2
or c D

s

g H

1 C H2k2=3
: (31)

Solution (30) is the same as the solution of linearized equation (3).
Let us consider a general case with finite amplitude .E D U.�2// as shown in

Fig. 1. The right side of equation (16) has zero at � D �2 and this equation can
be rewritten as:

�0.�/2

2
D U.�2/� U.�/ D

3g .�2 � �/.� � �1/.� � �0/

2c2.H C �/2
; (32)

where

�1 D
a C

p
1

2g .H C �2/2
; �0 D

a �
p
1

2g .H C �2/2
; (33a)

a D �H
h

Hc2 � 2A.H C �2/C g
�

H2 C 3�2 H C 2�2
2

�i

; (33b)

1 D H2
ð�

Hc2 � 2A.H C �2/C g .H C �2/.H C 2�2/
2
Ð

�

C4g .H C �2/
2
�

.2H C �2/c
2 � 2A.H C �2/C g�2.H C �2/

ÐŁ

: (33c)

We choose the value �2 in such a way, that the following inequalities are
satisfied:

�0 � �1 � �.�/ � �2: (34)
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In the term of the variable �.�/ equation (32) can be rewritten as:

�0.�/2 D
3g .Þ � þ cos.�.t//� �0/

c2 .H C Þ � þ cos.�.t//2
; (35)

where Þ D .�1 C �2/ =2, þ D .�2 � �1/ =2.
From relation (35) follows:

c .H C Þ � þ cos.�// d�
p

3g .Þ � þ cos.�/� �0/
D d�; (36)

or

Z

c .H C Þ � þ cos.�// d�
p

3g .Þ � þ cos.�/� �0/
D � � �0: (37)

It is seen from (35–36) that the differential �0.�/ is always positive, thus the
relation (38) is always invertible. Unfortunely, the inverse function cannot be
expressed in terms of known functions and thus examples of the solutions have
been calculated numerically. Finally, when�.�/ is specified, �.�/ can be calculated
by (18).

For a fixed depth, properties of the solution depend on velocity c. The constant
of the integration A results from the consideration, that the mean value of surface
elevation is zero. As for any constant A (for given H, �2 and c/ the surface
elevation and its mean value are calculated, the procedure of searching for the
proper value of A is an optimalization problem.

3. Results of Computation

A shape of waves with different wave heights is shown in Fig. 2. Period of waves
was 4 s, and water depth 1 m. When wave height increases, the wavelength also
increases, the wave crest is narrower and wave trough wider.

Fig. 2. Wave shapes. Wave period 4 s. Depth of water 1 m

A similar case of waves with period 8 s is depicted in Fig. 3. For greater heights
the waves are similar in shape to a solitary wave.
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Fig. 3. Wave shapes for different wave heighs. Wave period 8 s. Depth of water 1 m

The wave height – wave velocity relation for waves with period 4 s is shown in

Fig. 4. For small height, the velocity is less than in the linear case (linear velocity

is ³ 3 m/s).

Fig. 4. Velocity for different wave heights. Wave period 4 s. Depth of water 1 m

The wave velocity as a function of wave height for a wave of period 8 s is

shown in Fig. 5. In this case the dependency is almost linear.

Fig. 5. Velocity for different wave heights. Wave period 4 s. Depth of water 1 m

The Stokes drift for a wave with period 4 s is shown in Fig. 6.
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Fig. 6. Velocity of Stokes drift for different wave heights. Wave period 4 s. Depth of water 1 m

4. Conclusions

1. There exists a periodic solution to equation (3).

2. Bounded solutions of equation (3) can represent periodic or solitary waves.

3. Both length and velocity of waves increase when height of waves increases.

4. For solitary waves �1 D �0 D 0 and, after (32), it is possible to calculate c

and A. In this case c D
p

g .H C �2/. For periodic solutions, velocity of waves
is always less than this value.
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