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Abstract—In the paper a heuristic algorithm for a random

generation of feedback functions for Boolean full-length shift

register sequences is presented. With the help of the algorithm

one can generate nnn-stage Boolean full-length shift register se-

quences for (potentially) arbitrary n ≥ 6n ≥ 6n ≥ 6. Some properties of

the generated feedback functions are presented.
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1. Introduction

Nonlinear shift registers generating full-length sequences,

also referred to as de Bruijn sequences, have many appli-

cations in modern communications systems, especially in

cryptography as components of complex devices and algo-

rithms in cipherment and decipherment processes. There

exists a number of methods for the generation of full-length

sequences (cf. [1, 2, 6]).

In the paper we present some results of experiments done on

nonlinear Boolean functions. The functions used as feed-

back functions of shift registers give full-length sequences

generated by these shift registers. We generated all func-

tions for n-stage shift registers, for n = 3, 4, 5 and 6. The

experiments led us to the heuristic algorithm for generating

n-stage full-length shift registers, where the number n of

stages is sufficiently great.

2. Preliminaries

Let Zn
2 be n-dimensional vector space over the finite

field GF(2). An n-argument Boolean function is a map-

ping f : Zn
2 → Z2. Let An be the set of all n-argument

affine Boolean functions. Every Boolean function which is

not affine is said to be nonlinear.

Let f (xn−1, xn−2, . . . , x0) = yz and let z be the decimal

equivalent of the function’s argument, i.e., such a positive

integer that for each argument (xn−1, xn−2, . . . , x0) we have

z = xn−1 ·2n−1 + xn−2 ·2n−2 + . . . + x0 ·20
.

Then [y2n−1, . . . , y1, y0] is called the truth table of f . The

value y0 is the least significant value in the truth table and

y2n−1 is the most significant value. We divide the table

[y2n−1, . . . , y1, y0] into two subtables: least significant

[y2n−1−1, . . . , y1, y0]

and most significant

[y2n−1, . . . , y2n−1+1, y2n−1 ] .

For each truth table of an n-argument Boolean function

we compute the decimal value of its 4-bit codes in the

following way:

1) divide the truth table into 2n−2 words; each word is

composed of 4 bits;

2) compute the decimal equivalent for every word;

3) compute the algebraic sum of all decimal equivalents.

As an example let the truth table of 5-argument Boolean

function be given:

[00000101100101001111101001101011].

There are eight 4-bit words in the table:

0000 0101 1001 0100 1111 1010 0110 1011

The decimal equivalents of the words and their sum are as

follows:

[0000 0101 1001 0100 1111 1010 0110 1011]

0 +5 +9 +4 +15 +10 +6 +11 = 60.

The definitions presented below are taken from [4]. The

Boolean function is said to be balanced if in its truth

table the number of ones equals the number of zeros. An

n-argument Boolean function f is a function with linear

structure if there exists a ∈ Zn
2 such that a 6= (0,0 . . . , 0)

and for every x ∈ Zn
2 either f (x)⊕ f (x⊕ a) = 0 or f (x)⊕

f (x⊕ a) = 1. The Hamming distance of two n-argument

Boolean functions f and g, presented with the help of

their truth tables, is the number of positions in which the

two truth tables differ. The distance of a function f to

the set An is defined as the minimum of the Hamming dis-

tances to all functions of An. The nonlinearity of f , denoted

by N f , is the minimal Hamming distance between f and An.

If f is n-argument, n ≥ 3, and it is balanced then [5]:

N f ≤







2n−1 −2
1
2 n−1 −2, for n even

⌊⌊

2n−1 −2
1
2 n−1⌋⌋

, for n odd,

where
⌊⌊

x
⌋⌋

denotes the maximum even integer less than

or equal to x.

An n-stage nonlinear feedback shift register over GF(2)

(nNFSR for short) consists of n cells (n ≥ 1) joined as in

Fig. 1, where symbols of a nonempty alphabet {0, 1} may

be put in as a Boolean function f of n arguments. The

content of all n cells is said to be a state of nNFSR. The

nNFSR works in the discrete time. The state of nNFSR at

28



Boolean feedback functions for full-length nonlinear shift registers

a given moment t + 1 (t ≥ 0) is determined by its state at

the moment t and results from shifting the content of the

cell number r to the cell number r +1 (0 ≤ r ≤ n−2), and

putting the value f (xn−1, xn−2, . . . , x0) of the function f
for the state of this nNFSR at the moment t into the cell

number 0.

Let us mention that the numbering of register cells is

crucial for the algorithm of feedback functions choosing

presented later.

Fig. 1. An n-stage shift register with the feedback function f .

Let s = (xn−1,xn−2, . . . ,x0) be the state of an nNFSR. The

state s0 from which the nNFSR starts the work is said to

be initial. A sequence (si) of states of an nNFSR is pe-

riodic with period equal to T if T is the smallest positive

integer such that for each i = 1, 2, . . . the condition si+T = si
holds. An nNFSR generates periodic sequences of the pe-

riod T ≤ 2n. A sequence of states generated by nNFSR

is called a full-length sequence if T = 2n. Each nNFSR

generates B(n) = 22n−1−n full-length sequences [2].

In the sequel a sequence (si) of states generated by an

nNFSR with a nonlinear n-argument Boolean function f
will be called a sequence generated by the function f . An

nNFSR that generates a full-length sequence is called full-

length shift register.

3. Properties of feedback functions of

full-length shift registers

Using the exhaustive search in the set of all n-argument (for

n = 3, 4 and 5) Boolean functions we chose all functions

which give, when used as feedback functions, full-length

sequences. We can state the following facts.

Fact 1: The least and the most significant bits of the

most significant truth subtable equal 0.

Fact 2: The most significant truth subtable has an

odd number of 1s.

Fact 3: The least significant truth subtable is the

negation (i.e., respective bits are negated) of the most

significant truth subtable.

Fact 4: The sum of decimal equivalents of 4-bit

words in the truth tables equals 2n+1 − 2n−3 = 15 ·
2n−3 (i.e., 15, 30, 60 for n = 3, 4, 5, respectively).

Fact 5: Nonlinear n-argument (for n = 3, 4, 5)

Boolean function generating full-length sequence is

balanced (follows from the Fact 3) and is of linear

structure.

Fact 6: The greater number of 1s in the truth table

the greater value of nonlinearity.

Fact 7: The nonlinearity N f of obtained function has

one of the values: 2, 6, 10, . . . , and in general it is

equal to 2+4i for i = 0, 1, 2, . . .. The nonlinearities

never have the maximum value 2n−1−2
1
2 n−1−2 for

n even and
⌊⌊

2n−1 −2
1
2 n−1⌋⌋ for n odd.

There is 226 6-argument nonlinear Boolean functions gen-

erating full-length sequences. Choosing all of them by ex-

haustive search in the set of 264 6-argument Boolean func-

tions is difficult with respect to the time needed for com-

putation. Therefore, it was assumed that Facts 1–4 are true

also for n-argument (n ≥ 6) functions. This assumptions

leads to the following algorithm.

4. Algorithm for choosing all

n-argument (n ≥ 6) nonlinear

Boolean functions generating

full-length sequences

Input: The most significant truth subtable of n-argument

nonlinear Boolean function given by [y2n−1, . . . , y2n−1+1,

y2n−1 ].

Output: The set of all n-argument nonlinear Boolean func-

tions (given by the truth tables) generating full-length se-

quences, n ≥ 6.

Method:

1. Let y2n−1 = 0 and y2n−1 = 0.

2. For i = 1, 3, 5, 7, 9, . . . , 2n−1 − 3 generate in the

lexicographical order the words y2n−2, . . . , y2n−1+2,

y2n−1+1 having i 1s; for each word:

a. Construct the most significant subtable.

b. Construct the least significant subtable by the

negation of all bits in the most significant sub-

table.

c. Concatenate the tables constructed in steps 2a

and 2b.

d. Verify whether the sum of decimal equivalents

of all 4-bit words equals 15 · 2n−3; if not then

process for the next i.

e. Verify whether the n-stage shift register with

the feedback function given with the help of the

truth table constructed in the step 2c generates

the sequence of period 2n; if so then store the

truth table.
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The number of all words of the form y2n−2, . . . , y2n−1+2,

y2n−1+1 with i 1s equals
(2n−1−2

i

)

.

Hence, the number of all words having the odd number

1, 3, 5, 7, 9, . . . , 2n−1 −3 of 1s is equal to

s(n) =

(

2n−1 −2
1

)

+

(

2n−1 −2
3

)

+

(

2n−1 −2
5

)

+ . . .+

(

2n−1 −2
2n−1 −3

)

= 22n−1−3
.

If by the efficiency of the algorithm we understand the

quotient η of the number B(n) of all n-arguments nonlinear

Boolean functions generating full-length sequences and the

number s(n) of all examined functions, then

η =
B(n)

s(n)
= 2−n+3

.

For example, if n = 16 the efficiency η = 2−13. It means

that on average one function in the set of 8192 functions

has the required property. The efficiency of the algorithm

is quite satisfactory.

If in the algorithm instead of “generate in the lex-

icographical order the words y2n−2, . . . , y2n−1+2, y2n−1+1
having i 1s” we allow “generate randomly the words

y2n−2, . . . , y2n−1+2, y2n−1+1 having i 1s” we can use the al-

gorithm for random generation of Boolean functions gen-

erating full-length sequences for an arbitrary n.

The computational experiment confirmed the efficiency of

the algorithm for 6-argument functions; for all 6-argument

functions Facts 1–7 are true. We verified the randomly

generated functions for n from 7 to 20 and in every case

Facts 1–7 were true.

The algorithm were successfully used in the synthesis of

nNFSRs for FSR-255 family of hash functions [3].
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