Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
8th Workshop of the Polish Society of Computer Simulation (30.08-1.09.2001, Gdańsk-Sobieszewo, Poland)
Języki publikacji
Abstrakty
The entropy H of a continuous distribution with probability density function f* is defined as a function of the number of nodes (n) in a one-dimensional scalar random field. For the second order theory this entropy is expressed by the determinants of the covariance matrices and simulated for several types of correlation functions. In the numerical example the propagation of the entropy for the static response of linear elastic, randomly loaded beam has been considered. Two unexpected results have been observed: - function H(n) is entirely different for differentiable (m.s.) and non-differentiable fields, with the same parameters in the correlation functions, - in some cases, the greater randomness at the input (measured by the entropy) does not lead to the greater randomness at the output.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
379--385
Opis fizyczny
Bibliogr. 5 poz., rys.
Twórcy
autor
- Institute of Fluid Machinery, Polish Academy of Sciences, J. Fiszera 14, 80-952 Gdańsk, Poland
autor
- Department of Structural Mechanics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk, Poland
Bibliografia
- [1] Sobczyk K 1996 Stochastic Differential Equations, WNT, Warsaw (in Polish)
- [2] Opoka S 2001 Simulation and Classification of One-dimensional Random Fields in Continuum Mechanics, MSc Thesis, Gdansk University of Technology (in Polish)
- [3] Walukiewicz H 1997 Proc. of Euromech 372 (Ditlevsen O and Mitteau J, Eds.) Clermont- Ferrand, Blaise Pascal University, France, pp. 165-170
- [4] Walukicwicz H, Bielewicz E and Górski J 1997 Int. J. Computers and Structures 64 (1-4) 491
- [5] Wieczorkowski R and Zieliński R 1997 Computer Generators of Random Numbers, WNT, Warsaw (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0011-0033