PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinematic model of solute transport in stream networks: example with phosphate retention in Morsa Watershed, Norway

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A theoretical description of reactive solute transport in a network of stream channels is derived by convoluting unit solutions based on a physical representation of transport and topographical information of the distributions of solute load as well as pathways. The theory is applied to a generic analysis of the phosphate export in Morsa watershed due to the load from 620 individual households with a local wastewater treatment. Essential factors for the phosphate export is filtering of the water in stream-bed sediments through a distribution of hyporheic flow paths of various lengths. This generic study indicates that a significant portion of phosphate is retained in the hyporheic zones for a long time. The 90\% recovery time following a hypothetical remediation action in the households is expected to be in the order of one decade.
Rocznik
Strony
41--53
Opis fizyczny
Bibliogr. 20 poz., tab., il.
Twórcy
autor
  • Department of Biometry and Informatics Swedish University of Agricultural Sciences P.O. Box 7013, 750 07 Uppsala, Sweden
autor
  • Norwegian Center for Soil and Environmental Research, Frederik A. Dahls vei 20, N-1432 s Norway
autor
  • University of Sciences and Technology Faculty of Physics and Nuclear Techniques, ul. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • Bencala K. E., Walters R. A. (1983), Simulation of Solute Transport in a Mountain Pool-and-riffle Stream: a Transient Storage Model, Water Resources Res., 19(3), 718–724.
  • Comans R. N. J., Hockley D. E. (1992), Kinetics of Cesium on Illite, Geochemica et Cosmochimica Acta, Vol. 56, 1157–1164.
  • Cunningham J. A., Werth C. J., Reinhard M., Roberts P. V. (1997a), Effects of Grain-Scale Mass Transfer on the Transport of Volatile Organics through Sediments: 1. Model Developments, Water Resources Res., 33(12), 2713–2726.
  • Cunningham J. A., Werth C. J., Reinhard M., Roberts P. V. (1997b), Effects of Grain-Scale Mass Transfer on the Transport of Volatile Organics through Sediments: 1. Column Results,Water Resources Res., 33(12), 2727–2740.
  • Elliott A. H., Brooks N. H. (1997a), Transfer of Nonsorbing Solutes to a Streambed with Bed Forms: Theory, Water Resources Res., 33(1), 123–136.
  • Elliott A. H., Brooks N. H. (1997b), Transfer of Nonsorbing Solutes to a Streambed with Bed Forms: Laboratory Experiments, Water Resources Res., 33(1), 137–151.
  • Franchini M., O’Connel P. E. (1996), An Analysis of the Dynamic Component of the Geomorphologic Instantaneous Unit Hydrograph, Journal of Hydrology, 175, 407–428.
  • Huettel M., Ziebis W., Forster S. (1996), Flow-induced Uptake of Particulate Matter in Permeable Sediments, Limnol. Oceanogr., 41(2), 309–322.
  • Johansson H., Jonsson K., Forsman J.,W¨orman A. (2000), Retention of Conservative and Sorptive Solutes in Rivers – Simultaneous Tracer Experiments, The Science of the Total Environment, 266(2001), 229–238.
  • Kadlec R. H. & Knight R. L. (1996), Treatment Wetlands, CRC Press LLC, USA.
  • Lyche Solheim A., Vagstad N., Kraft P., Løvstad Ø., Skoglund S., Turtumøygard S., Selvik J.-R. (2001), Remedial Action Analysis for Morsa, Report by Norsk Institutt for vannforskning, Publ. NIVA, ISBN 82-577-4016-0 (in Norvegian).
  • Packman A. I., Brooks N. H., Morgan J. J. (2000), A Physicochemical Model for Colloid Exchange between a Stream and a Sand Streambed with Bed Forms, Water Resources Res., 36(8), 2351–2361.
  • Reichle R., Kinzelbach W., Kinzelbach H. (1998), Effective Parameters in Heterogeneous and Homogeneous TransportModels with Kinetic Sorption,Water Res. Research. 34(4), 583–594.
  • Rodriguez-Iturbe I., Rinaldo A. (1997), Fractal River Basin, Cambridge University Press, U.S.
  • Sakadevan K., Bavor H. J. (1998), Phosphate Adsorption Characterisation of Soils, Slags and Zeolite to be Sued as Substrates in Constructed Wetlands, Water Resources Res., 32(2), 393–399.
  • Simic E., Destouni G. (1999),Water and Solute Residence Times in a Catchment: StochasticMechanistic Model Interpretation of O–18 Transport, Water Resources Res., 35(7), 2109–2119.
  • Smith J. T., Comans R. N. J., Ireland D. G., Nolan L., Hilton J. (2000), Experimental and in situ Study of Radiocaesium Transfer across the Sediment-Water Interface and Mobility in Lake Sediments, Applied Geochemistry, Vol. 15, 833–848.
  • Snell J. D., Sivapalan M. (1994), On the Geomorphological Dispersion in Natural Catchments and the Geomorphological Unit Hydrograph, Water Resources Res., 30(7), 2311–2323.
  • Wörman A. (1998), Analytical Solution and Time Scale for Transport of Reactive Solutes in Rivers and Streams, Water Resources Res., 34(10), 2703–2716.
  • Wörman A., Packman A., Jonsson K., Johansson H. (2002), Effect of Flow-Induced Exchange in Hyporheic Zones on Longitudinal Transport of Solutes in Streams and Rivers, Water Resources Res., 38(1), 2: 1–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0011-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.