PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implicit versus explicit finite volume schemes for extreme, free surface water flow modelling

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One explicit and three implicit finite volume method schemes of the Roe type are presented in the paper. The properties and applicability of these methods for modelling unsteady, rapidly varied, open channel flow are investigated. The schemes are used for numerical simulation of one-dimensional extreme flow described by de Saint-Venant equations. The computational results are compared with each other and an analytical (exact) solution to an idealized dam-break problem. The classical versions of general scheme implicit in time - fully implicit and trapezoidal scheme - are not restricted by a stability condition, like an explicit one, however they add some numerical diffusion and dispersion errors to the solution. The modification of parameter , originally proposed for a box scheme of finite difference method, has improved computational properties of the general one-step implicit scheme. This version of finite volume scheme of the Roe type implicit in time can be recommended for modelling and simulation of transient flows in storm sewers and open channel networks.
Twórcy
  • Gdańsk University of Technology, Faculty of Hydro- and Environmental Engineering, ul. Narutowicza 11/12, 80-952 Gdańsk, mszyd@pg.gda.pl
Bibliografia
  • Abbott M. B. (1979), Computational Hydraulics: Elements of the Theory of Free-Surface Flows, Pitman, London.
  • Alcrudo F., Garcia-Navarro P. and Priestley A. (1994), An Implicit Method for Water Flow Modelling in Channels and Pipes, Journal of Hydraulic Research, Vol. 32, No. 5, 721–742.
  • Ambrosi D. (1995), Approximation of Shallow Water Equations by Roe’s Riemann Solver, Int. Journal for Numerical Methods in Fluids, Vol. 20, 157–168.
  • Bermudez A. and Vazquez M. E. (1994), Upwind Methods for Hyperbolic Conservation Laws with Source Terms, Computers and Fluids, 23, 1049–1071.
  • Coulson C. A. and Jeffrey A. (1982), Waves – Mathematical Models (in Polish), WNT, Warsaw.
  • Cunge J. A., Holly Jr F. M. and Verwey A. (1980), Practical Aspects of Computational River Hydraulics, Pitman, London.
  • Delis A. I., Skeels C. P. and Ryrie S. C. (2000a), Evaluation of Some Approximate Riemann Solvers for Transient Open Channel Flows, Journal of Hydraulic Research, Vol. 38, No. 3, 217–231.
  • Delis A. I., Skeels C. P. and Ryrie S. C. (2000b), Implicit High-Resolution Methods for Modelling One-Dimesional Open Channel Flow, Journal of Hydraulic Research, Vol. 38, No. 5, 369–382.
  • Glaister P. (1993), Flux Difference Splitting for Open-Channel Flows, International Journal for Numerical Methods in Fluids, Vol. 16, 629–654.
  • Godunov S. K. (1959), A Difference Scheme for Numerical Computation of Discontinuous Solution of Hydrodynamic Equations, Math. Sbornik, 47, 271–306.
  • Goutal N. and Maurel F. (2002), A Finite Volume Solver for 1D Shallow-Water Equations Applied to an Actual River, Int. Journal for Numerical Methods in Fluids, Vol. 38, 1–19.
  • Nujic M. (1995), Efficient Implementation of Non-Oscillatory Schemes for the Computation of Free-Surface Flows, Journal of Hydraulic Research, Vol. 3, No. 1.
  • Potter D. (1977), Computational Physics (in Polish), PWN, Warsaw.
  • Roe P. L. (1981), Approximate Riemann Solvers, Parameters Vectors and Difference Schemes, Journal of Computational Physics, 43, 357–372.
  • Stoker J. J. (1957), Water Waves, Interscience Publishers, Wiley, New York.
  • Szydłowski M. (2001), Two-Dimensional Shallow Water Model for Rapidly and Gradually Varied Flow, Archives of Hydro-Engineering and Environmental Mechanics, Vol. 48, No. 1, 35–61.
  • Szymkiewicz R. (2000), Mathematical Modelling of Open Channel Flows (in Polish), PWN, Warsaw.
  • Tan W. (1992), Shallow Water Hydrodynamics, Elsevier, Amsterdam.
  • Toro E. F. (1997), Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin.
  • Van Leer B. (1979), Towards the Ultimate Conservative Difference Scheme v.a. Second-Order Sequel to Godunov’s Method, Journal of Computational Physics, Vol. 32, 101–136.
  • Zoppou C. and Roberts S. (2003), Explicit Schemes for Dam-Break Simulations, Journal of Hydraulic Engineering, Vol. 129, No. 1, 11–34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0011-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.