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Abstract

One explicit and three implicit finite volume method schemes of the Roe type are
presented in the paper. The properties and applicability of these methods for mod-
elling unsteady, rapidly varied, open channel flow are investigated. The schemes
are used for numerical simulation of one-dimensional extreme flow described by
de Saint-Venant equations. The computational results are compared with each other
and an analytical (exact) solution to an idealized dam-break problem. The classical
versions of general scheme implicit in time – fully implicit and trapezoidal scheme
– are not restricted by a stability condition, like an explicit one, however they add
some numerical diffusion and dispersion errors to the solution. The modification of
parameter 2, originally proposed for a box scheme of finite difference method, has
improved computational properties of the general one-step implicit scheme. This ver-
sion of finite volume scheme of the Roe type implicit in time can be recommended
for modelling and simulation of transient flows in storm sewers and open channel
networks.
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1. Introduction

In recent years considerable effort has been devoted to modelling one- and
two-dimensional open channel flows. The free surface one-dimensional, un-
steady water flow is governed by the well-known mathematical model called de
Saint-Venant equations (Abbott 1979). Quite a number of numerical methods of
solving this equations system have been proposed and successfully applied, so far.
For the gradually varied flow simulation numerous schemes of finite difference
method (FDM) and finite element method (FEM) are widely used (Cunge et
al 1980, Szymkiewicz 2000). Unfortunately, the FDM and FEM numerical pro-
cedures are often inefficient for modelling rapidly varied, transient flow, when
discontinuities such as hydraulic jumps and bores exist.
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For this kind of flow, shock-capturing methods must be implemented to solve
the conservative form of de Saint-Venant equations (Abbott 1979). Many of these
methods are based on the finite volume method (FVM) applied for space dis-
cretization. To model the free surface flow, the FVM schemes of the Roe type,
originally developed for gas dynamics (Roe 1981), are widely used (Glaister 1993,
Ambrosi 1995, Toro 1997, Szydłowski 2001, Goutal and Maurel 2002).

In shock-capturing methods, schemes explicit rather than implicit in time
are usually used. Hence, there are numerous analyse of FVM explicit schemes
available in the literature (Delis et al 2000a, Zoppou and Roberts 2003). These
schemes are reported as efficient and robust, but are conditionally stable. The sta-
bility of explicit schemes for hyperbolic equations is restricted by the well known
Courant-Fredrichs-Lewy (CFL) condition (Potter 1977) and limited to Courant
number less than unity. To avoid this disadvantage, implicit schemes can be used
for time integration. However, investigations and applications of such schemes
for rapidly varied water flow are rather unique (Alcrudo et al 1994, Delis et al
2000b).

This paper focuses on the FVM Roe one-step scheme implicit in time. It is
examined against a two-step explicit scheme applied for numerical solution to
one-dimensional open channel, extreme flow. Application of the implicit integra-
tion technique for de Saint-Venant equations results in the system of non-linear,
algebraic equations. To solve such system, either an iterative procedure or less
computational time consuming linearization process at each time level is required.
Here, following Alcrudo et al (1994), the latter technique is implemented.

In order to assess the applicability and numerical features of particular
schemes they were implemented to simulate the extreme, rapidly varied flow oc-
curring in horizontal and frictionless open channel due to sudden, catastrophic
dam collapse.

2. Governing Equations and Finite Volume Space Discretization

The unsteady one-dimensional open channel flow can be described by de
Saint-Venant equations, originally proposed by French researcher in 1871 as
a flood wave propagation model in the following form (Szymkiewicz 2000):

@ h

@ t
C

@

@ x
.uh/ D 0; (1a)

@ u

@ t
C u

@ u

@ x
C g

@ h

@ x
D g

�

S0 � Sf

Ð

; (1b)

where u is the flow mean velocity, h water depth, g acceleration due to gravity, x

and t represent distance and time, and S0 and Sf denote bed and friction slopes,
respectively. The friction slope can be defined by Manning’s formula, which for
the rectangular channel of unit width has the form:
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Sf D
n2u juj

h4/3
: (2)

The mathematical model (Eqs. 1a, b) describes properly gradually varied,
one-dimensional free surface flow. Unfortunately, this non-conservative form of
equations is inconvenient for rapidly varied flow, where solution discontinuities
are expected. It was proved (Abbott 1979) that the water flow with discontinuities
can be described by the conservative form of de Saint-Venant model only. This
can be written in vector form as follows (Cunge et al 1980):
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A : (4a, b, c)

The homogenous part of equation (3) is of a hyperbolic type and is respons-
ible for most numerical difficulties in the solution to the de Saint-Venant model
for rapidly varied flow. In this paper only this part – fundamental for numerical
solution to the problem – is analysed. However, it should be noted that numerical
integration of source terms (Eq. 4c) must also be carried out with great atten-
tion, for flow over abrupt bathymetry and flow of small depth and large velocity
(Bermudez and Vazquez 1994, Nujic 1995, Szydłowski 2001, Goutal and Maurel
2002).

Neglecting the source terms vector S, equation (3) can be rewritten in equi-
valent form as

@ U

@ t
C divF D 0: (5)

To integrate the equations system (5) in space by FVM the one-dimensional
domain x should be discretized into a set of N line segment cells (Fig. 1). Each
cell i of length 1xi is defined by its centre point xi and each flow variable is
averaged and constant inside the cell.

Integration of equation (5) yields for each cell i

@ Ui

@ t
1xi C

I

Bi

.Fn/ d B D 0; (6)

where 1xi is the length of cell i and Bi represents the cell boundary. The first
term of equation (6) represents time evolution of variables h and u inside the cell
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Fig. 1. Discretization of one–dimensional calculation domain

i . The surface integral represents the total normal flux through the boundary of
the cell. The integral in equation (6) can be substituted by the corresponding sum
of two components as follows

@ Ui

@ t
1xi C

�

FiC1=2 � Fi�1=2

Ð

D 0: (7)

The fluxes F must be estimated at cell interfaces (at the boundaries between
two neighbouring cells). Moreover, in order to solve equation (7) the numerical
scheme should be completed with the time integration technique.

3. The Flux Computation Algorithm

In order to calculate the flux FiC1=2 the solution to approximate the Riemann
problem (Godunov 1959) proposed by Roe (1981) can be applied. The full com-
putation procedure is available in the literature (Roe 1981, Toro 1997), hence
in this paper, only some significant details of the solution of de Saint-Venant
equations are presented.

The original problem (Eq. 3) – neglecting the source term – can be trans-
formed to the following form

@ U

@ t
C A

@ U

@ x
D 0; (8)

where U is the same as in equation (3) and jacobian matrix A=@F/@U can be
written as

A D
�

0 1
c2 � u2 2u

½

; (9)

where c D
p

gh is a celerity.

In the approximate Roe solution to the Riemann problem, the equation system
(8) is linearized by replacing the jacobian A by averaged matrix A. Both forms
of the jacobian matrix must be diagonalizable in the Roe approach. The above
condition means that the following equation must be satisfied

A D R 3 L; (10)
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where 3 is a diagonal matrix containing the eigenvalues of matrix A, whereas R

and L contain associated right and left eigenvectors. The eigenvalues ½i of matrix
A can be evaluated by solution to characteristic equation (Coulson and Jeffrey
1982)

jA � ½Ij D 0; (11)

where I is the identity matrix. Considering jacobian matrix (Eq. 9) the roots of
equation (11) are equal

½1 D u � c; (12a)

½2 D u C c: (12b)

The corresponding right (r) and left (l) eigenvectors can be calculated solving
the following equations (Coulson and Jeffrey 1982)

Ari D ½iri .i D 1; 2/; (13a)

li A D ½i li .i D 1; 2/: (13b)

The solution to equations (13a, b) for de Saint-Venant model yields after
normalization following right and left eigenvectors, respectively

r1 D
�

1
u � c

�

; r2 D
�

1
u C c

�

; (14a, b)

l 1 D
1

2c

�

u C c

�1

�

; l2 D
1

2c

�

c � u

1

�

: (15a, b)

Applying the Roe idea of the approximate Riemann problem solution, the
numerical flux F at iC1/2 cell-interface can be expressed as

FiC1=2 D 0:5 .FL C FR/ � 0:5
þ

þ

þA

þ

þ

þ1U; (16)

where subscripts L and R denote the left and right sides of iC1/2 cell interface,
þ

þ

þ
A

þ

þ

þ
contains modules of matrix A elements and 1U is an increment of depth and

discharge between cells i and iC1. Alternatively, the flux (Eq. 16) can be written
in equivalent form as

F
iC1/2 D 0:5 .FL C FR/ � 0:5

2
X

kD1

Þk

þ

þ½ k

þ

þrk; (17)
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where ½k and rk are the eigenvalues and right eigenvectors of jacobian A, re-
spectively. For de Saint-Venant equations the coefficients Þk (k = 1, 2) are equal
to

Þ 1 D
1h .u C c/ � 1.uh/

2c
; (18a)

Þ2 D
�1h .u � c/ C 1.uh/

2c
: (18b)

Following the Roe (1981) proposal, the values of depth h and velocity u –
needed to calculate the flux (Eq. 16 or 17) – can be evaluated as follows

h D
hL C hR

2
) c D

q

gh; (19a)

u D
p

hL uL C
p

hR uRp
hL C

p
hR

: (19b)

Considering the form of Roe numerical flux (Eq. 16 or 17) it can be seen that
it consists of two elements. First is an arithmetic average of fluxes computed on
both sides of the cell interface and the second is part of the up-wind type.

If the conserved variables UL and UR, necessary to estimate flux (Eq. 16 or 17),
are equal to cell-centre parameters Ui and UiC1, respectively, then the numerical
scheme is of first-order accuracy in space. In order to ensure an approximation
of second-order accuracy, a function extrapolation technique can be imposed.
In the schemes presented here, the function values are extrapolated from the
cell centre-point to the cell interface using the reconstruction technique called
the Monotonic Upstream-centred Scheme for Conservation Law (MUSCL) (Van
Leer 1979, Tan 1992). Applying this approach for the reconstruction of function
U, the values of flow parameters at the cell-interface iC1/2 can be calculated as
follows

UL D Ui C
Þ

4
[.1 � þ/ .Ui � Ui�1/ C .1 C þ/ .UiC1 � Ui /];

UR D UiC1 �
Þ

4
[.1 C þ/ .UiC1 � Ui / C .1 � þ/ .UiC2 � UiC1/]:

(20)

In order to chose the type of extrapolation one can use parameters Þ

and þ. Parameter Þ switches the scheme from first-order accuracy (Þ = 0) to
second-order accuracy (Þ = 1) in space. Parameter þ classifies the numerical
scheme as central (þ D 1), up-wind (þ D �1) or up-wind-biased (þ = 0 or
þ = 1/3). To ensure good quality of solution to most practical cases Tan (1992) sug-
gests to use þ = 1/3. Hence, this value was accepted for each simulation presented
in this paper.

The extrapolation (Eq. 20) creates some computational difficulties near the
discontinuity regions. The spurious oscillations can appear in the solution, so
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a correction of reconstruction is needed. This may be done through the application
of a limiter to the reconstruction scheme (Eq. 20). The extrapolation can be
limited by the parameter Þ. This parameter may have the form of non-linear
function called limit function. Numerous forms of this function can be found in
the literature (Tan 1992). Herein, the van Albada limit function was implemented:

Þ D
2 1U�1UC C Ž

.1U�/2 C .1UC/2 C Ž
; (21)

where 1U� D Ui � Ui�1 , 1UC D UiC1 � Ui and Ž is a small parameter to prevent
division by zero.

4. Time Integration Technique

In order to complete the solution of equation (7) a numerical scheme of time
integration must be implemented. For a computational cell i , Equation (7) can
be written in another vector form

@ Ui

@ t
D Xi ; (22)

where vector X – containing all the terms of equation (7), except for the time
derivatives – can be expressed as

Xi D �
�

FiC1=2 � Fi�1=2

Ð

1xi
: (23)

The solution of equation (22) can be obtained by integration in the time
increment ht, t+1ti. The general integration in time scheme – defining a new
function values – can be written as follows

UnC1
i D Un

i C
tC1t
Z

t

Xi dt; (24)

where superscripts n and n C 1 denote previous and next time level on the numer-
ical grid. In a discrete form it can be rewritten as one-step formula with parameter
2

UnC1
i D Un

i C 1t
�

2XnC1
i C .1 � 2/ Xn

i

�

: (25)

Scheme (Eq. 25) can be realized in an explicit or implicit way. In the present
work four schemes are compared – three implicit: for 2 = 1 (fully implicit of
first-order accuracy in time), 2 = 0.5 (trapezoidal of second-order accuracy in
time) and for 2 = 0.67 and one explicit scheme for 2 = 0. The latter, in two-step
version, can be written as:
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U
p
i D Un

i C 0:51tXn
i ; (26a)

UnC1
i D Un

i C 1tX
p
i : (26b)

This scheme is of second-order accuracy in time, but its stability is restricted
by the local value of the Courant number (Potter 1977)

Cr D
jui j C c

1 xi =1t
� 1; (27)

where subscript i concerns the cell. To avoid this restriction, the implicit in time
scheme should be used, but for non-linear problems, such as de Saint-Venant
equations, the resulting, system of algebraic equations after space and time in-
tegration is also non-linear. In order to find a solution, the use of an iterative
procedure is usually required, like the Newton method for example. Such numer-
ical technique is computationally rather expensive. To reduce the ‘costs’ of this
time consuming process the system of equations (25) can be linearized.

The system (Eq. 25) can be rewritten as:

UnC1
i C

1t

1x
2

�

FnC1
iC1=2 � FnC1

i�1=2

�

D Un
i �

1t

1x
.1 � 2/

�

Fn
iC1=2 � Fn

i�1=2

�

: (28)

Following the same procedure as Alcrudo et al (1994) or Delis et al (2000b),
the implicit part of numerical flux FnC1 in equation (28) is linearized using the
Taylor expansion:

FnC1
i D Fn

i C An
i ŽUi C O

�

1t2
�

; (29)

where ŽUi D UnC1
i � Un

i . The expansion (Eq. 29) ensures the conservative dis-
cretization consistent with Roe procedure for solving an approximate Riemann
problem. Moreover, the following approximation is made:

A
nC1

iC1=2 D A
n

iC1=2: (30)

The introduction of simplifications (Eqs. 29, 30) and formula (16) into equa-
tion (28) yields system:

B1 ŽUi�1 C B2 ŽUi C B3 ŽUiC1 D B4; i D 2; :::; N � 1; (31)

where B coefficients are 2ð2 matrices with elements:

B1 D �0:5 2
1t

1x

�

An
i�1 C A

n

i�1=2

�

; (32a)
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B2 D I C 0:5 2
1t

1x

�

A
n

i�1=2 C A
n

iC1=2

�

; (32b)

B3 D 0:5 2
1t

1x

�

An
iC1 � A

n

iC1=2

�

; (32c)

B4 D �
1t

1x

�

Fn
iC1=2 � Fn

i�1=2

�

: (32d)

For a single channel, the equations (31) form a block, tri-diagonal system,
which must be completed by a consistent set of boundary conditions. The bound-
ary and initial conditions are not substantial for the properties of any numerical
scheme, so this problem is omitted in this paper. It should be noted however,
that the conditions must be imposed in accordance with the characteristics theory
(Szymkiewicz 2000) and idea of FVM (Szydłowski 2001). Then, the system has
to be solved at each time level. This can be done using any method for linear
systems solution.

5. Numerical Computations and Results Discussion

The main interest here is to test several numerical schemes for modelling rapidly
varied, extreme open channel flow. To assess the quality of a numerical solution to
de Saint-Venant equation – produced with one explicit and three implicit schemes
– an idealized dam-break problem is chosen as a test-case. The results for each
approach are compared with an analytical (exact) solution proposed by Stoker
(1957).

In the test-cases one-dimensional flow in rectangular, 1 m wide and 400 m long,
frictionless channel with flat bottom is considered. Initially, two different water
levels are separated from each other by a ‘dam’ in the middle of the channel.
Before dam-break, a water body is at rest and water levels are equal to 6 and
1 m upstream and downstream, respectively. After sudden water release, two
waves can be observed – shock wave travelling downstream and depression wave
moving upstream. It is assumed that during simulation the waves do not reach
the computational domain boundaries (channel inflow and outflow).

Each numerical simulation – presented in this paper – was carried out using a
mesh composed of 800 computational cells (1x = 0.5 m). The properties of nu-
merical schemes were investigated for different maximum local Courant numbers
varying from 0.2 to 4.5. Time integration was done using a two-step explicit in
time scheme and general implicit scheme for parameter 2 equal to 1.0, 0.5 and
additionally 0.67. The latter value has been proposed by Cunge et al (1980) as the
optimal one for the FDM box scheme. The comparison between results obtained
using various schemes for different numerical parameters is presented in Figures
from 2 to 7.
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Fig. 2. Computed profiles of water depth (a) and velocity (b) after 10 s of simulation

In Figure 2 the problem solution along the channel after 10 s of simulation is

presented. The numerical computations were carried out for Cr = 0.2 using the

schemes of second-order accuracy in space. It required that the MUSCL tech-

nique for function reconstruction was applied. The two schemes of second-order

accuracy in time – two-step explicit and trapezoidal implicit (2 = 0.5) – produced

almost identical depth and velocity profiles for an assumed small Courant number.

The flow parameters and front positions are correct. Some numerical diffusion can

be observed near the front of the depression wave. However, the quality of nu-

merical solution in this region depends strongly on the scheme accuracy in space,

which can be seen in Figure 3.

In this graph the part of depth profile near the front of a depression wave is

presented. For any time integration method, if FVM Roe scheme of first-order

accuracy in space is used, the wave front is broader than for second-order accur-

acy. This spurious effect exists due to numerical diffusion added to the solution

by dissipative first-order schemes. It should be underlined that despite different

accuracy, the solution is reasonable and close to the exact one in this region and

it correctly predicts location and velocity of moving wave fronts.
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Fig. 3. Front of depression wave after 10 s of simulation – comparison between exact solution
(solid lines) and computed using different schemes (symbols)

The good results’ fitting decreases for a Courant number greater than about
0.8, especially when second-order in time scheme is used. The schemes’ limits
can be clearly observed analysing the shock wave (bore) front. The comparison of
depth profile near this front, for different schemes accuracy and Courant numbers,
are shown in Figures 4, 5, 6 and 7.

First, the results calculated using the explicit scheme are presented (Fig. 4a–e).
For first-order in space schemes the front wave is reproduced on twelve compu-
tational cells (Fig. 4a, b) and solution stability is limited by a Courant number
equal to unity. If this value is overcome, some spurious oscillations in solution
exist (Fig. 4c) leading to expected instability. After space accuracy improvement
to second-order, the scheme is more dispersive. This choice makes the stability
limit more restrictive. Now, for Cr ½ 0.8 spurious oscillations can be observed
(Fig. 4e), however, the wave front is sharper – reproduced on 4 cells (Fig. 4d, e).
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Fig. 4. Front of shock wave after 10 s of simulation – comparison between exact solution (solid
lines) and computed using two-step explicit scheme for various space accuracy and Courant

numbers (symbols)

Next, the simulations were run using implicit schemes of first-order (Fig. 5a–f)
and second-order (Fig. 6a–f) accuracy in time. If the fully implicit (2 = 1) of
first-order accuracy in space is used (Fig. 5a–c), the strong influence of numer-
ical diffusion can be observed, but the wave front location is correctly predicted.
This error, occurring due to dissipative properties of this first-order accuracy in
both space and time, scheme, is enhanced for increasing Courant numbers and
time integration step. If the second-order accuracy in space fully implicit (Euler)
scheme is implemented – which is still of first-order accuracy in time – except for
numerical diffusion, the incorrect bore position is observed (Fig. 5d–f). Moreover,
the depth profile upstream from the wave front is overestimated.
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Fig. 5. Front of shock wave after 10 s of simulation – comparison between exact solution (solid
lines) and computed using fully implicit scheme (2=1) for various space accuracy and Courant

numbers (symbols)

In Figures from 6a to 6f the results obtained using implicit trapezoidal scheme

(2 = 0.5) are presented. This one-step implicit scheme is of second-order accuracy

in time. Again, if the scheme of first-order accuracy in space is used, the numerical

diffusion effect can be observed (Fig. 6a, b). The solution is similar to numerical

results obtained using other schemes presented before for a Courant number

less than unity. Unfortunately, for Cr > 1 smooth oscillation near front exists,

which distorts the shape of wave front (Fig. 6c). Such error is a consequence of

numerical dispersion, which is characteristic of the implicit trapezoidal scheme.

The influence of dispersive features of that scheme is clearly seen in Figures

6d–f. Now, the scheme is of second-order accuracy in both time and space. The
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spurious oscillations are stronger – leading to instability – and the location of
front is incorrect.

Fig. 6. Front of shock wave after 10 s of simulation – comparison between exact solution (solid
lines) and computed using implicit trapezoidal scheme (2=0.5) for various space accuracy and

Courant numbers (symbols)

Analysing the presented results, it can be seen that all FVM Roe schemes
produced sufficiently accurate solution for Cr < 1 and first-order accuracy in
space. In such cases there are no oscillations in depth (and velocity) profile and the
wave front is predicted correctly. The better shock wave resolution can be ensured
if schemes of second-order accuracy in space are implemented. However, such
approach requires integration of de Saint-Venant equations with small Courant
number, as well as for explicit and implicit schemes. For Cr > 1 the implicit FVM
Roe schemes are too dissipative (2 D 1) or too dispersive (2 = 0.5).
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Fig. 7. Front of shock wave after 10 s of simulation – comparison between exact solution (solid
lines) and computed using modified implicit scheme (2=0.67) for various space accuracy and

Courant numbers (symbols)

Investigating the numerical properties of presented FVM schemes similarity to

other one step implicit schemes can be observed. The influence of numerical errors

on solution accuracy can be compared to the features of the FDM box scheme

(Cunge et al 1980) for example. In order to obtain smooth, but not too diffusive

numerical solution to de Saint-Venant equations using a box scheme, parameter 2

equal to 0.67 should be applied (Szymkiewicz 2000). The results of implementation

of the FVM Roe implicit scheme with 2 = 0.67 for simulation of an idealized

dam-break problem are presented in Figures 7a–f. Satisfactory results are obtained

if the scheme of first-order accuracy in space (without MUSCL reconstruction)

is used (Fig. 7a–c). The numerical solution is devoid of spurious oscillations and

even for Cr > 1 the numerical diffusion error does not distort the wave front
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stronger than for smaller values of Courant number. This important property
allows integration of the model equations with larger time step, keeping sufficiently
good results’ quality. The scheme improvement to second-order accuracy in space
once again makes the scheme too dispersive (Fig. 7d–f).

6. Conclusions

Several FVM Roe schemes for modelling one-dimensional, extreme flow with
discontinuities, were examined. The numerical simulations were carried out using
explicit and implicit time integration technique for different values of Courant
number. The results for each scheme were compared with each other and Stoker
analytical solution.

It can be concluded that all analysed FVM schemes of first-order accuracy in
space, produce similar, reasonable results for a Courant number less than unity.
The improvement of accuracy to second-order through application of MUSCL
method of function reconstruction, makes the wave fronts resolution better. How-
ever, due to numerical dispersion, solution oscillations and incorrect shock posi-
tion can occur.

For a Courant number greater than one, the explicit scheme becomes – in ac-
cordance with expectations – unstable. The solutions obtained using fully implicit
and trapezoidal schemes are strongly distorted near the front due to numerical
diffusion and dispersion, respectively. The numerical properties of the FVM Roe
scheme implicit in time can be improved through parameter 2 modification. Al-
though such a scheme is dissipative, the numerical diffusion does not deform the
shape of shock wave front more than other FVM schemes for Cr < 1. Moreover,
the solution is devoid of oscillations near the front, ensuring smooth profile of wa-
ter depth even for Cr > 1. This is advantageous for flow simulation when a large
computational time step is required.

Summing up, the two-step explicit FVM Roe scheme can be recommended
for modelling the extreme, rapidly varied flow with discontinuities, when the
second-order accuracy both in space and time is indispensable. If the substantial
reduction of simulation time is needed, the implicit scheme of first-order accuracy
in space with 2 = 0.67 can be successfully applied. The possibility of exceeding
the Courant number limitation can be very useful for modelling two-dimensional
shallow flows, where large numbers of computational cells are used, and for long
time simulations. Additionally, except for well-known, good properties of FVM
schemes – like discontinuity handling or good mass conservation – the examined
implicit scheme with 2 = 0.67 can be relatively easy extrapolated ensuring solu-
tion to de Saint-Venant equations in a channel network. All scheme features men-
tioned also make it a good candidate for modelling unsteady, rapidly varied flow
in storm sewer systems, where subcritical and supercritical, as well as free-surface
and pressure flow with numerous transients can be observed.
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