PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of shear localization in granular bodies within gradient-enhanced hypoplasticity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a FE-analysis of a spontaneous shear localization inside non-cohesive sand during plane strain compression. The calculations were carried out with a gradient-enhanced hypoplastic constitutive law. The hypoplastic law can reproduce essential features of granular bodies depending on the void ratio, pressure level and deformation direction. To model the thickness of shear zones, a characteristic length of the microstructure was incorporated via the second gradient of the modulus of the deformation rate. To determine the effect of micro-structure, the analysis was performed with different characteristic lengths for the same specimen size.
Twórcy
autor
  • Gdańsk University of Technology, Civil Engineering Department, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland, tejchmk@pg.gda.pl
Bibliografia
  • Aifantis E. (1984), On the Microstructural Origin of Certain Inelastic Models, Trans. ASME J. Mat. Engng. Technol., 106, 326–330.
  • Aifantis E. (2003), Update on Class of Gradient Theories, Mechanics of Materials 35, 259–280.
  • Alehossein H., Korinets A. (2001), Gradient Dependent Plasticity and the Finite Difference Method, in: Bifurcation and Localisation Theory in Geomechanics (H. B. Mühlhaus et al, eds), Swets and Zeitlinger, Lisse, 117–124.
  • Askes H., Suiker A. S. J., Sluys L. J. (2001), Dispersion Analysis and Numerical Simulations of Second-Order and Fourth-Order Strain Gradient Models Based on a Microstructure, Proc. ECCM-2001, Cracow, Poland, 1–20.
  • Bauer E. (1996), Calibration of a Comprehensive Hypoplastic Model for Granular Materials, Soils and Foundations, 36, 1, 13-26.
  • Bazant Z., Lin F., Pijaudier-Cabot G. (1987), Yield Limit Degradation: Non-Local Continuum Model with Local Strain, Proc. Int. Conf. Computational Plasticity, Barcelona. In: Owen, editor, 1757–1780.
  • Belytschko T., Chiang H., Plaskacz E. (1994), High Resolution Two Dimensional Shear Band Computations: Imperfections and Mesh Dependence, Com. Meth. Appl. Mech. Engng., 119, 1–15.
  • Benallal A., Billardon R., Geymonat G. (1987), Localization Phenomena at the Boundaries and Interfaces of Solids, Proc. of the 3rd Int. Conf. Constitutive Laws for Engineering Materials: Theory and Applications, Tucson, Arizona. In: C. S. Desai et al, editors, 387–390.
  • Borst R. de, M¨uhlhaus H. B. (1992), Gradient dependent plasticity: formulation and algorithmic aspects, Int. J. Numer. Methods Engng., 35, 521–539.
  • Borst R. de, M¨uhlhaus H. B., Pamin J., Sluys L. (1992), Computational Modelling of Localization of Deformation, Proc. of the 3rd Int. Conf. Comp. Plasticity, In: D. R. J. Owen, H. Onate, E. Hinton, eds., Swansea, Pineridge Press, 483–508.
  • Borst R. de, Pamin J. (1996), Some Novel Developments in Finite Element Procedures for Gradient-Dependent Plasticity, Int. J. Numer. Meth. Eng., 39 (14), 2477–2502.
  • Borst R. de (1998), On Gradient-Enhanced Coupled Plastic Damage Theories, in: Computational Mechanics (S. Idelsohn, E. Onate, E. Dvorkin, eds.), Barcelona, Spain.
  • Borst R. de, Pamin J., GeersM. G. D. (1999), On Coupled Gradient Theory, Eur. J. Mech. A-Solid 18, 6, 939–962.
  • Brinkgreve R. (1994), Geomaterial Models and Numerical Analysis of Softening, Dissertation, Delft University, 1–153.
  • Chambon R., Caillerie D., Matsuchima T. (2001), Plastic Continuum with Microstructure, Local Second Gradient Theories for Geomaterials: Localization Studies, Int. J. Solids and Structures, 38, 8503–8527.
  • Chen J., Yuan H., Kalkhof D. (2001), A Non-Local Damage Model for Elastoplastic Materials Based on Gradient Plasticity Theory, Bericht Paul Scherrer Institut, 1–130.
  • Chen Z., Schreyer H. L. (1987), Simulation of Soil-Concrete Interfaces with Non-Local Constitutive Models, J. Engng. Mech., 113, 1665–1677.
  • Dasgupta S., Sengupta D. (1990), A Higher Order Triangular Plate Bending Element – Dependent Plasticity and Damage Revisited, Int. J. Num. Meth. Engng., 30, 419–430.
  • Desrues J., Chambon R., Mokni M., Mazerolle F. (1996), Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, G´eotechnique, 46, 3, 529–546.
  • Ehlers W., Volk W. (1998), Fundamental Considerations on the Numerical Investigation of Shear Band Phenomena in Saturated and Non-Saturated Frictional Porous Materials, Computational Mechanics – New Trends and Applications. In: S. Idelsohn, E. Onate, E. Dworkin, editors, CIMNE Barcelona, 1–21.
  • Fleck N. A., Hutchinson J. W. (1993), A Phenomenological Theory for Strain Gradient Effects in Plasticity, J. Mechanics and Physics of Solids, 41, 12, 1825–1857.
  • Fleck N. A., Hutchinson J. W. (1997), Strain Gradient Plasticity, Adv. Appl. Mech., 33, 295–361.
  • Fremond M., Nedjar B. (1996), Damage, Gradient of Damage and Principle of Virtual Power, I. J. Solids and Structures, 33, 8, 1083–1103.
  • Gudehus G., (1996), A Comprehensive Constitutive Equation for Granular Materials, Soils and Foundations, 36, 1, 1–12.
  • Hassan A. H. (1995), Etude Experimentale et Numerique du Comportement Local et Global d’une Interface Sol Granulaire Structure, Dissertation, Grenoble University.
  • Herle I., Gudehus G. (1999), Determination of Parameters of a Hypoplastic Constitutive Model from Grain Properties, Mechanics of Cohesive-Frictional Materials, 4, 5, 461–486.
  • Kolymbas D. (1977), A Rate-Dependent Constitutive Equation for Soils, Mech. Res. Comm., 6, 367–372.
  • Kuhl E., Ramm E. (2000), Simulation of Strain Localization with Gradient Enhanced Damage Models, Computational Materials Sciences, 16, 176–185.
  • Lade P. V. (1977), Elasto-Plastic Stress-Strain Theory for Cohesionless Soil with Curved Yield Surfaces, Int. J. Solid Structures., 13, 1019–1035.
  • Leśniewska D. (2000), Analysis of Shear Band Pattern Formation in Soil, Habilitation, Institute of Hydro-Engineering of the Polish Academy of Sciences, Gdansk.
  • Leśniewska D., Mróz Z. (2003), Shear Bands in Soil Deformation Processes, in: Bifurcations and Instabilities in Geomechanics (J. Labuz and A. Drescher, eds), Swets and Zeitlinger, 109–119.
  • Łodygowski P. V., Perzyna P. (1997), Numerical Modelling of Localized Fracture of Inelastic Solids in Dynamic Loading Process, Int. J. Num. Meth. Eng., 40, 22, 4137–4158.
  • Maier T. (2002), Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizit¨at, PhD Thesis, University of Dortmund.
  • Meftah F., Reynouard J. M. (1998), A Multilayered Mixed Beam Element in Gradient Plasticity for the Analysis of Localized Failure Mode, Mechanics of Cohesive-Frictional Materials, 3, 305–322.
  • Mühlhaus H.-B. (1989), Application of Cosserat Ttheory in Numerical Solutions of Limit Load Problems, Ing. Arch., 59, 124–137.
  • Mühlhaus H.-B. (1990), Continuum Models for Layered and Blocky Rock, Comprehensive Rock Engineering, In: J. A. Hudson, Ch. Fairhurst, editors, 2, 209–231, Pergamon Press.
  • Neddleman A. (1998), Material Rate Dependence and Mesh Sensitivity in Localization Problems, Comp. Meths. Appl. Mech. Eng., 67, 69–85.
  • Niemunis A., Maier T. (2004), Towards Gradient Continuum with Hypoplastic Model (under preparation).
  • Oka F., Jing M., Higo Y. (2001), Effect of Transport of Pore Water on Strain Localisation Analysis of Fluid-Saturated Strain Gradient Dependent Viscoplastic Geomaterial, in: Bifurcation and Localisation Theory in Geomechanics (H. B. M¨uhlhaus et al, eds), Swets and Zeitlinger, Lisse, 77–83.
  • Pamin J. (1994), Gradient Dependent Plasticity in Numerical Simulation of Localisation Phenomena, PhD Thesis, Delft University.
  • Peerlings R. H. J., Borst R. de, Brekelmans W. A. M., Geers M. G. D. (1998), Gradient-Enhanced Damage Modelling of Concrete Fracture, Mechanics of Cohesive-Frictional Materials, 3, 323–342.
  • Pestana J. M., Whittle A. J. (1999), Formulation of a Unified Constitutive Model for Clays and Sands, Int. J. Num. Anal. Meth. Geomech., 23, 1215–1243.
  • Pijaudier-Cabot G. (1995), Non Local Damage, Continuum Models for Materials with Microstructure. In: H. B. M¨uhlhaus, editor, John Wiley & Sons Ltd, 105–143.
  • Prisco C. di, Imposimato S., Aifantis E. C. (2002), A Visco-Plastic Constitutive Model for Granular Soils Modified According to Non-Local and Gradient Approaches, Int. J. Num. and Anal. Meth. Geomech., 26, 121–138.
  • Sluys L. Y. (1992), Wave Propagation, Localisation and Dispersion in Softening Solids, PhD Thesis, Delft University of Technology.
  • Sluys L. J., Borst R. de (1994), Dispersive Properties of Gradient and Rate-Dependent Media, Mech. Mater., 183, 131–149.
  • Tatsuoka F., Okahara M., Tanaka T., Tani K., Morimoto T., Siddiquee M. S. (1991), Progressive Failure and Particle Size Effect in Bearing Capacity of Footing on Sand, Proc. of the ASCE Geotechnical Engineering Congress, 27, 2, 788–802.
  • Tatsuoka F., Siddiquee M. S., Yoshida T., Park C. S., Kamegai Y., Goto S., Kohata Y. (1994), Testing Methods and Results of Element Tests and Testing Conditions of Plane Strain Model Bearing Capacity Tests using Air-Dried Dense Silver Buzzard Sand, Internal Report, University of Tokyo, 1–129.
  • Tejchman J. (1989), Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, 117, 1–236.
  • Tejchman J., Wu W. (1993), Numerical Study on Shear Band Patterning in a Cosserat Continuum, Acta Mechanica, 99, 61–74.
  • Tejchman J. (1997), Modelling of Shear Localisation and Autogeneous Dynamic Effects in Granular Bodies, Publication Series of the Institute for Soil and Rock Mechanics, University Karlsruhe, 140.
  • Tejchman J., Herle I., Wehr J. (1999), FE-Studies on the Influence of Initial Void Ratio, Pressure Level and Mean Grain Diameter on Shear Localization, Int. J. Num. Anal. Meth. Geomech., 23, 15, 2045–2074.
  • Tejchman J. (2002), Patterns of Shear Zones in Granular Materials within a Polar Hypoplastic Continuum, Acta Mechanica, 155, 1–2, 71–95.
  • Tejchman J. (2003), A Non-Local Hypoplastic Constitutive Law to Describe Shear Localisation in Granular Bodies, Archives of Hydro-Engineering and Environmental Mechanics, 50, 4, 229–250.
  • Tejchman J. (2004a), Comparative FE-Sof Shear Localizations in Granular Bodies within a Polar and Non-Local Hypoplasticity, Mechanics Research Communications, 31/3, 341–354.
  • Tejchman J. (2004b), Effect of Heterogeneity on Shear Zone Formation During Plane Strain Compression,Archives of Hydro-Engineering and Environmental Mechanics, 51, 2, 149–183.
  • Triantafyllidis N., Aifantis E. C. (1986), A Gradient Approach to Localization of Deformation, Hyperelastic Materials, J. Elasticity 16, 225–238.
  • Uesugi M., Kishida H., Tsubakihara Y. (1988), Behaviour of Sand Particles in Sand-Steel Friction, Soils and Foundations, 28, 1, 107–118.
  • Vardoulakis I. (1977), Scherfugenbildung in Sandk¨orpern als Verzweigungsproblem, Dissertation, Institute for Soil and Rock Mechanics, University of Karlsruhe, 70.
  • Vardoulakis I. (1980), Shear Band Inclination and Shear Modulus in Biaxial Tests, Int. J. Num. Anal. Meth. Geomech., 4, 103–119.
  • Vardoulakis I., Goldscheider M. (1981), Biaxial Apparatus for Testing Shear Bands in Soils, Proc. 10th Conf. Soil Mech. Found. Engng., Stockholm, 819–824.
  • Vardoulakis I., Aifantis E. (1991), A Gradient Flow Theory of Plasticity for Granular Materials, Acta Mechanica 87, 197–217.
  • Vardoulakis I., Shah K. R., Papanastasiou P. (1992), Modelling of Tool-Rock Shear Interfaces using Gradient-Dependent Flow Theory of Plasticity, Int. J. Rock Mech. Min. Sci. Geomech., 29, 6, 573-582.
  • Vardoulakis I., Sulem J. (1995), Bifurcation Analysis in Geomechanics, Blackie Academic and Professional, Glasgow.
  • Vermeer P. (1982), A Five-Constant Model Unifying Well-Established Concepts, Proc. Int. Workshop on Constitutive Relations for Soils (eds. G. Gudehus, F. Darve, I. Vardoulakis), Balkema, 175–197.
  • Voyiadjis G. Z., Dorgan R. J. (2001), Gradient Formulation in Coupled Damage-Plasticity, Arch. of Mech., 53, 565–597.
  • Wang C. C. (1970), A New Representation Theorem for Isotropic Functions, J. Rat. Mech. Anal., 36, 166–223.
  • Wolffersdorff P. A. von (1996), A Hypoplastic Relation for Granular Materials with a Predefined Limit State Surface, Mechanics Cohesive-Frictional Materials, 1, 251–271.
  • Wu W., Niemunis A. (1996), Failure Criterion, Flow Rule and Dissipation Function Derived from Hypoplasticity, Mechanics of Cohesive-Frictional Materials, 1, 145–163.
  • Xia Z. C., Hutchinson J. W. (1997), Steady-State Crack Growth and Work of Fracture for Solids Characterized by Strain Gradient Plasticity, J. Mechanics and Physics of Solids, 45, 8, 1253–1273.
  • Yoshida T., Tatsuoka F., Siddiquee M. (1994), Shear Banding in Sands Observed in Plane Strain Compression, Localisation and Bifurcation Theory for Soils and Rocks. In: R. Chambon, J. Desrues and I. Vardoulakis, editors, 165–181, Balkema, Rotterdam.
  • Zbib H., Aifantis E. (1988a), On the Localisation and post Localisation of Plastic Deformation, Part 1, On the Initiation of Shear Bands, Res. Mechanica, 23, 261–277.
  • Zbib H., Aifantis E. (1988b), On the Localisation and Post Localisation of Plastic Deformation, Part 1, On the Evolution and Thickness of Shear Bands, Res. Mechanica, 23, 279–292.
  • Zbib H. M., Rhee M., Hirth J. P. (1998), On Plastic Deformation and the Dynamics of 3D Dislocations, Int. J. Mech. Sci., 40, 113–127.
  • Zervos Z., Papanastasiou P., Vardoulakis I. (2001), A Finite Element Displacement Formulation for Gradient Plasticity, Int. J. Numer. Methods in Engineering, 50, 1369–1388.
  • ZhouW., Zhao J., Liu Y., Yang Q. (2002), Simulation of Localization with Strain-Gradient-Enhanced Damage Mechanics, Int. J. Num. And Anal. Meth. Geomech., 26, 793–813.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0011-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.