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Abstract

The paper presents a FE-analysis of a spontaneous shear localization inside non-co-
hesive sand during plane strain compression. The calculations were carried out with
a gradient-enhanced hypoplastic constitutive law. The hypoplastic law can reproduce
essential features of granular bodies depending on the void ratio, pressure level and
deformation direction. To model the thickness of shear zones, a characteristic length
of the microstructure was incorporated via the second gradient of the modulus of
the deformation rate. To determine the effect of micro-structure, the analysis was
performed with different characteristic lengths for the same specimen size.
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1. Introduction

Localization of deformation in the form of narrow zones of intense shearing is
a fundamental phenomenon in granular materials (Vardoulakis 1977, 1980, Te-
jchman 1989, 1997, Tatsuoka et al 1991, 1994, Desrues et al 1996, Leśniewska
2000, Leśniewska and Mróz 2003). Thus, it is of primary importance that it be
taken into account while modelling the behaviour of granulates. Localization un-
der shear occurs, either in the interior domain in the form of spontaneous shear
zones (Vardoulakis 1977, Yoshida et al 1994) or at interfaces in the form of
induced shear zones where structural members are interacting and stresses are
transferred from one member to the other (Uesugi et al 1988, Tejchman 1989,
Hassan 1995). The localized shear zones inside the material are closely related
to its unstable behaviour. Therefore, an understanding of the mechanism of the
formation of shear zones is important since they act as a precursor to ultimate
soil failure.

Classical constitutive models cannot describe properly both the thickness of
localization zones and distances between them during numerical analyses, since
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they omit the characteristic length of the microstructure. Thus, the rate boundary
value problem becomes ill-posed when localization or material softening occurs,
i.e. the governing differential equations of motion change the type by losing ellipti-
city for static and hiperbolicity for dynamic problems (Benallal et al 1987, de Borst
et al 1992). This leads to such problems as zero-energy dissipation, pathological
dependence on the fineness and orientation of the spatial discretization, incap-
ability of determining the direction and size of a localized zone and non-realistic
load-displacement curves. As the element mesh is refined, the width of the loc-
alized deformation decreases to a vanishing width. Thus, the solutions become
meaningless. To overcome this drawback, classical constitutive models require an
extension in the form of a characteristic length to regularize the rate boundary
value problem and to take into account microscopic inhomogeneities triggering
shear localization (e.g. size and spacing of microdefects, grain size, aggregate
size, fiber spacing). Different strategies have be used to include a characteristic
length in both elasto-plasticity and hypoplasticity: polar models (Mühlhaus 1989,
1990, Tejchman 1989, 2002, 2004b, de Borst et al 1992, Sluys 1992, Tejchman
and Wu 1993, Tejchman et al 1999, Maier 2002), non-local models (Bazant et al
1987, Pijaudier-Cabot 1995, Brinkgreve 1994, Maier 2002, Tejchman 2003, 2004a),
gradient models (Aifantis 1984, Sluys 1992, de Borst et al 1992, Pamin 1994, de
Borst and Pamin 1996), and models with viscosity (Neddleman 1988, Sluys 1992,
Belytschko et al 1994, Łodygowski and Perzyna 1997, Ehlers and Volk 1998). The
presence of a characteristic length enables the expression of the size effect (de-
pendence of strength and other mechanical properties on the size of the specimen)
observed experimentally on softening specimens. This is made possible since the
ratio l=L governs the response of the model (l – characteristic length, L – size of
the structure).

The second gradient models have often been used, since the pioneering work
of Aifantis (1984), Chen and Schreyer (1987) and Zbib and Aifantis (1988a, b).
They have been used in damage mechanics (Peerlings et al 1998, Kuhl and Ramm
2000, Zhou et al 2002), elasticity (Triantafyllidis and Aifantis 1986), dislocation
dynamics (Zbib et al 1998), plasticity (de Borst and Mühlhaus 1992, Sluys and
de Borst 1994, Pamin 1994) and coupled plastic damage theories (de Borst 1998,
de Borst et al 1999, Voyiadjis and Dorgan 2001). The constitutive models cap-
ture gradients in a different way. They usually involve the second gradient of the
plastic strain measure (Laplacian) in the yield or potential function (plasticity)
or in the damage function (damage mechanics). The plastic multiplier which is
connected to the plastic strain measure is considered as a fundamental unknown
and is solved at global level simultaneously with the displacement degrees of
freedom (de Borst and Mühlhaus 1992, Pamin 1994, de Borst and Pamin 1996,
Chen et al 2001, Aifantis 2003). In the classical theory of plasticity, the plastic
multiplier is determined from an algebraic equation. Such gradient model obvi-
ously requires a Cl -continuous interpolation of the plastic multipler field. This
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requirement is fulfilled by e.g. an element with the 8-nodal serendipity interpol-
ation of displacements and 4-nodal Hermitian interpolation of plastic strain with
2ð2 Gaussian integration (Pamin 1994). The extra gradient coefficient appearing
in the constitutive law may be calibrated through shear band thickness measure-
ments (Aifantis 2003).

Alternatively, all strain gradients can be taken into account (Chambon et al
2001). The stress is conjugate to the strain rate, and the so-called double stress
is conjugate to its gradient. To ensure that the derivatives are continuous across
two-dimensional elements boundaries, a triangular element of Cl continuity with
36 degrees of freedom developed by Dasgupta and Sengupta (1990) can be used
(Zervos et al 2001, Maier 2002, Niemunis and Maier 2004). The degrees of free-
dom at each node are the displacements, both first order and all three second or-
der derivatives. The model requires a relationship between the double stress and
strain gradient. To simplify the calculations, Zhou et al (2002) for two-dimensional
calculations used a triangular element proposed by Xia and Hutchinson (1997)
with 18 DOF to take into account the first gradients of displacements for a gradi-
ent model by Fleck and Hutchinson (1993), including the entire strain gradient.

An other possibility is to modify the flow rule by introducing the second order
yield function (di Prisco et al 2002, Aifantis 2003) or use the gradients of the
damage variables (Fremond and Nedjar 1996).

The gradient terms can be evaluated not only by using additional (rather
complex) shape functions, but also by applying an explicit method in the form of
a standard central difference scheme (Alehossein and Korinets 2001, di Prisco et
al 2002, Zhou et al 2002).

In this paper, a spontaneous shear localization in granular bodies was in-
vestigated with a finite element method based on a hypoplastic constitutive law
extended by the second gradient of the modulus of the deformation rate. The
second gradient was calculated using a standard central difference scheme (thus,
additional shape functions were avoided). The advantages of this method are:
simplicity of computation, little effort to modify each commercial FE-code and
high computation efficiency. The FE-analysis was performed with n enhanced
hypoplastic model for a specimen of dry sand subject to plane strain compres-
sion under constant lateral pressure. Similar comparative FE-calculations have
already been performed within a polar hypoplasticity (Tejchman et al 1999, Tejch-
man 2004a, b) and non-local hypoplasticity (Tejchman 2003, 2004a) including the
microstructure (related to mean grain diameter) in a different way.

2. Hypoplasticity

Hypoplastic constitutive laws (Kolymbas 1977, Gudehus 1996, Bauer 1996, von
Wolffersdorff 1996, Tejchman 1997) are an alternative to elasto-plastic formula-
tions for continuum modelling of granular materials (Lade 1977, Vermeer 1982,



246 J. Tejchman

Pestana and Whittle 1999). They describe the evolution of effective stress compon-
ents with the evolution of strain components by a differential equation including
isotropic linear and non-linear tensorial functions according to the representation
theorem by Wang (1970). In contrast to elasto-plastic models, the decomposition
of deformation components into elastic and plastic parts, yield surface, plastic
potential, flow rule and hardening rule are not needed. The hypoplastic models
describe the behaviour of so-called simple grain skeletons which are characterised
by the following properties (Gudehus 1996):

ž the state is fully defined through the skeleton pressure and void ratio (in-
herent anisotropy of contact forces between grains is not considered and
vanishing principal stresses are not allowed),

ž deformation of the skeleton is due to grain rearrangements (e.g. small de-
formations < 10�5 due to elastic behaviour of grain contacts are negligible),

ž grains are permanent (abrasion and crushing are excluded in order to keep
the granulometric properties unchanged),

ž three various void ratios decreasing exponentially with pressure are distin-
guished (minimum, maximum and critical),

ž the material manifests an asymptotic behaviour for monotonous and cyclic
shearing or SOM-states for proportional compression,

ž rate effects are negligible,

ž physico-chemical effects (capillary and osmotic pressure) and cementation
of grain contacts are not taken into account.

The hypoplastic constitutive laws are of the rate type. Due to incremental
non-linearity with the deformation rate, they are able describe both a non-linear
stress-strain and volumetric behaviour of granular bodies during shearing up to
and after the peak with a single tensorial equation. They include also: barotropy
(dependence on pressure level), pycnotropy (dependence on density), dependence
on the direction of deformation rate, dilatancy and contractancy during shearing
with constant pressure, increase and release of pressure during shearing with
constant volume, and material softening during shearing of a dense material.
They are apt to describe stationary states, i.e. states in which a grain aggregate can
continuously be deformed at constant stress and constant volume under a certain
rate of deformation. Although, the hypoplastic models are developed without
recourse to concepts of the theory of plasticity, failure surface, flow rule and
plastic potential are obtained as natural outcomes (Wu and Niemunis 1996). The
feature of the model is a simple formulation and procedure for determination of
material parameters with standard laboratory experiments. The parameters are
related to granulometric properties encompassing grain size distribution curve,
shape, angularity and hardness of grains (Herle and Gudehus 1999). Owing to
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that, one set of material parameters is valid within a large range of pressures and
densities.

Stress changes due to the deformation of a granular body can be generally
expressed by

o
¦ i j D F .e; ¦kk; dkl / (1)

wherein the Jaumann stress rate tensor (objective stress rate tensor) is defined by

o
¦i j D

ž
¦ i j � wik¦kj C ¦ikwkj ; (2)

F in Eq. 1 represents an isotropic tensor-valued function, ¦i j is the Cauchy skel-
eton (effective) stress tensor, e the void ratio and dkl the rate of deformations
tensor (stretching tensor). If the volume of grains remains constant (i.e. incom-
pressible grains), the rate of the void ratio can be expressed by the evolution
equation:

Ł
e D .1 C e/ dkk: (3)

The rate of deformation tensor di j and the spin tensor wi j are related to the
material velocity v as follows:

di j D
�

vi; j C vj;i

Ð

=2; wi j D
�

vi; j � vj;i

Ð

=2; ./;i D @ ./ =@xi : (4)

The condition of the incremental non-linearity (Bauer 1996) requires that
the tensorial function F in Eq. 1 is not differentiable only for di j = 0. Such
requirement results in the following equation where the function F is decomposed
into two parts

o
¦ i j D A .e; ¦kl ; dkl/ C B

�

e; ¦i j

Ð

jjdkl jj: (5)

The function A is linear in dkl , while the function B is non-linear in dkl . jjdkl jj
denotes the Euclidian norm

p
dkldkl . The following representation of the general

constitutive equation is used (Gudehus 1996, Bauer 1996):

o
¦ i j D fs

h

Li j

� ^
¦ kl ; dkl

�

C fd Ni j

� ^
¦ i j

�

p

dkldkl

i

; (6)

wherein the normalized stress tensor
^
¦ i j is defined by

^
¦ i j D

¦i j

¦kk
: (7)

The scalar factors fs D fs .e; ¦kk/ and fd D fd .e; ¦kk/ take into account the
influence of the density and pressure level on the stress. The stiffness factor fs
is proportional to the granulate hardness hs and depends on the mean stress and
void ratio:



248 J. Tejchman

fs D
hs

nhi

�

1 C ei

e

� �

�
¦kk

hs

�1�n

(8)

with

hi D
1

c2
1

C
1

3
�

�

ei0 � ed0

ec0 � ed0

�Þ 1

c1

p
3

: (9)

The granulate hardness hs represents a density-independent reference pres-
sure and is related to the entire skeleton (not to single grains). The density factor
fd resembles a pressure-dependent relative density index and is represented by

fd D
�

e � ed

ec � ed

�Þ

; (10)

Here e is the current void ratio, ec the critical void ratio, ed denotes the void
ratio at maximum densification (due to cyclic shearing), ei the maximum void
ratio, Þ denotes the pycnotropy coefficient, and n is the compression coefficient.
The void ratio e is thus limited by ei and ed . The values of ei ; ed and ec are
assumed to decrease with the pressure p D �¦kk=3 according to the equations
(Fig. 1):

Fig. 1. Pressure dependence of void ratios

ei D ei0 exp[� .3p=hs/
n]; (11)

ed D ed0 exp[� .3p=hs/
n]; (12)

ec D ec0 exp[� .3p=hs/
n]; (13)
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wherein ei0; ed0 and ec0 are the values of ei ; ed and ec for ¦kk D 0, respectively.
For the tensorial functions Li j and Ni j , the following representatives are used
(Gudehus 1996, Bauer 1996, Tejchman 1997):

Li j D a2
1di j C ^

¦i j
^
¦ kldkl ; Ni j D a1

�

^
¦ i j C

^
¦ Ł

i j

�

; (14)

where

a�1
1 D c1 C c2

r

^
¦ Ł

kl

^
¦ Ł

lk[1 C cos .3�/]; (15)

cos .3�/ D �
p

6
� ^
¦ Ł

kl

^
¦ Ł

kl

½1:5

� ^
¦ Ł

kl

^
¦ Ł

lm

^
¦ Ł

mk

�

; (16)

c1 D
r

3

8

.3 � sin �c/

sin �c
; c2 D

3

8

.3 C sin �c/

sin �c
: (17)

�c is the critical angle of internal friction during stationary flow. � denotes
the Lode angle: the angle on the deviatoric plane ¦1 C ¦2 C ¦3 D 0 between the
stress vector and the axis ¦3 (¦i is the principle stress vector), and ¦ Ł

i j denotes
the deviatoric part of ¦i j . In case of sand, the hypoplastic constitutive relation is
approximately valid in a pressure range 1 kPa < �¦kk=3 < 1000 kPa. Below this,
additional capillary forces due to the air humidity and van der Waals forces may
become important, and above it, grain crushing.

The constitutive relationship requires 7 material constants: ei0; ed0, ec0, �c,
hs , n and Þ. The FE-analyses were carried out with the following material con-
stants (for so-called Karlsruhe sand): ei0 D 1:3, ed0 D 0:51, ec0 D 0:82, �c D 30Ž,
hs D 190 MPa, n D 0:5 and Þ = 0.3 (Bauer 1996). The parameters hs and n are
estimated from a single oedometric compression test with an initially loose speci-
men (hs reflects the slope of the curve in a semi-logarithmic representation, and
n its curvature, Fig. 2). The constant Þ is found from a triaxial test with a dense
specimen (it reflects the height and position of the peak value of the stress-strain
curve). The angle �c is determined from the angle of repose or measured in a
triaxial test with a loose specimen. The values of ei0; ed0; ec0 are obtained with
conventional index tests (ec0 ³ emax, ed0 ³ emin, ei0 ³ .1:1 � 1:5/emax . The mean
grain diameter of sand is d50 = 0.5 mm.

3. Gradient Hypoplasticity

Gradient approaches have been proposed for ductile materials (metals), (Fleck
and Hutchinson 1997, Chen et al 2001), quasi-brittle materials (rock, concrete)
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Fig. 2. Influence of n and hs on compression curves for two different materials

(Chen and Schreyer 1987, Vardoulakis et al 1992, Pamin 1994, Meftah and Rey-

nouard 1998, Chen et al 2001) and granular materials (Vardoulakis and Aifantis

1991, Slyus 1992, Vardoulakis and Sulem 1995, Oka et al 2001, Maier 2002, di

Prisco et al 2002) to regularize a boundary value problem and to calculate loc-

alization of deformations. They include a characteristic length through the in-

troduction of a higher order spatial gradient of different constitutive variables

(elastic, plastic, damage, hypoplastic) in the governing equations of material de-

scription. The higher-order deformation gradients give rise to a non-local effect

which regularizes the localization of deformation and renders numerical analyses

mesh-objective. The gradient terms are thought to reflect the fact that below

a certain size scale the interaction between the micro-structural carriers of the

deformation is non-local (Aifantis 2003). They disappear from the constitutive

model if a homogeneous state of strain and stress is analyzed. Thus, they can be

treated as a singular perturbation of the standard equations (Askes et al 2001).

The advantage of a gradient approach is that it is suitable for both shear and

tension (decohesion) dominated applications. The disadvantages are: necessity of

use of complex shape functions (Pamin 1994, Chen et al 2001) and the character-

istic length is not directly related to the grain or aggregate diameter (granulates

and concrete).

Gradient–type regularization can be derived from non-local models (Bazant et

al 1987) which are based on spatial averaging of state variables (strains, stresses,

plastic strain measure, damage measure) in a certain neighbourhood of a given

state. Each non-local state variable YŁ can be calculated in point x as (Bazant et

al 1987):

YŁ .x/ D
1

A

1
Z

�1

w .r / Y .x C r / dV; (18)
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where r is the distance from the material point compared to other points of the

entire material body, w is the weighting function, Y is local state variable, V

denotes the volume and A is the weighted body area:

A D
1

Z

�1

w .r / dV : (19)

As the weighting function w; the error density function is usually chosen

(Brinkgreve 1994, Maier 2002):

w .r / D
1

l
p

³
e�.r= l/2

: (20)

The parameter l denotes a characteristic length (it determines the size of the

neighbourhood influencing the state at the given point). At the distance of a few

times the length l , the function w is equal to zero (Fig. 3). The characteristic

length l in Eq. 20 can be related to dimensions of the material micro-structure on

the basis of comparative calculations on localization of deformation (Tejchman

2003).

Fig. 3. Distribution of the weighting function w

By expanding the state variable Y.x C r / in Eq. 18 into a Taylor series around

the point r = 0, choosing the error function w (Eq. 20) as the weighting function

and neglecting terms higher than second order, the following relationship is ob-

tained for a non-local gradient variable (one-dimensional problems), (Brinkgreve

1994, Pamin 1994)
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YŁ .x/ D
1

A

2

4

1
Z

�1

1

l
p

³
e�.r= l/2

Y.x/dr C
1

Z

�1

r

l
p

³
e�.r= l/2 dY.x/

dx
drC

C
1

Z

�1

r 2

2l
p

³
e�.r= l/2 d2Y .x/

dx2
dr C

1
Z

�1

r 3

6l
p

³
e�.r= l/2 d3Y .x/

dx3
drC

C
1

Z

�1

r 4

24l
p

³
e�.r= l/2 d4Y .x/

dx4
dr C ::::

3

5 D Y C l
@Y

@x
C

l2

4

@2Y

@x2
:

(21)

The odd derivative can be cancelled because of the implicit assumption of
isotropy (de Borst et al 1992). Restricting the treatment to the second-order de-
rivative, each non-local state variable is equal to

YŁ.x/ D Y C
l2

4

@2Y

@x2
: (22)

In the FE-calculations, the second gradient of the modulus of the deformation
rate (Eq. 6)

d D
p

dkldkl (23)

was taken into account. This parameter is always positive and strongly affected
by shear localization (Tejchman 2003, 2004a). Thus, the enhanced (non-local)
modulus of the deformation rate dŁ was calculated for two-dimensional problems
in the following way

dŁ .x ; y/ D d C
l2

4

�

@2d

@x2
C

@2d

@y2
C 2

@2d

@x@y

�

: (24)

Alternatively, the enhanced (non-local) density factor fd of Eq. 10 can be used
(Tejchman 2003).

Instead of using complex shape functions to describe the evolution of the
second gradient of d, a standard central difference scheme was applied (Alehos-
sein and Korinets 2001, di Prisco et al 2002, Zhou et al 2002) which assumes
a parabolic interpolation of the function dŁ (the variable d is influenced by the
values only in adjacent elements). From the theory of finite difference method, for
the variable dŁ (when the difference paces dx and dy are infinitesimal) the second
derivatives can be approximated in each element (when the mesh is regular in the
vertical and horizontal direction) according to Fig. 4 as:

@2d5

@x2
D

d8 � 2d5 C d2

dx2
; (25)
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Fig. 4. Diagram for determination of the gradient of the constitutive variable for each triangular
element

@2d5

@y2
D

d6 � 2d5 C d4

dy2
; (26)

@2d5

@x@y
D

d9 C d1 � d3 � d7

4dxdy
; (27)

where the lower subscript at d denotes the number of the element. Thus, the
effect of adjacent elements can be taken into account in each element (e.g. the
element “5” of Fig. 4). The higher order polynomial interpolation of the function
dŁ .x ; y/ can also be assumed.

One must keep in mind that the first order gradients in Eq. 21 cannot be omit-
ted under certain circumstances, e.g. in pure bending and indentation processes
(Chen et al 2001).

4. FE-Implementation

FE-calculations of plane strain compression tests were performed with a sand
specimen which was ho = 10 cm high and b = 2 cm wide. Only quadrilateral
finite elements composed of four diagonally crossed triangles were applied, to

avoid volumetric locking. In total, 320 quadrilateral elements (0:25 ð 0:25 cm2/

divided into 1280 triangular elements with linear shape functions for displacements
were used. The dimensions of finite elements were 5 ð d50 to obtain the thickness
of shear zones independent of the mesh size within an extended hypoplasticity
(Tejchman 1997, Tejchman et al 1999, Maier 2002). Integration was performed

with one sampling point placed in the middle of each element. The calculations
were carried out with small deformations. The second gradients of the variable
d were calculated in each triangular element (Eqs. 25–27, Fig. 4) on the basis of
the previous iteration step (explicit scheme).
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As the initial stress state, a K0-state with ¦22 D ¦c C dx2 and ¦11 D ¦c C
K0dx2 was assumed in the sand specimen where ¦c denotes the confining pres-

sure, x2 is the vertical coordinate measured from the top of the specimen, d

denotes the initial volume weight and K0 D 0:47 is the earth pressure coefficient

at rest (¦11 – horizontal normal stress, ¦22 – vertical normal stress).

A quasi-static deformation in sand was initiated through a constant vertical

displacement increment prescribed at nodes along the upper edge of the specimen.

The boundary conditions of the sand specimen were: no shear stress at the top and

bottom. To preserve the stability of the specimen against horizontal sliding along

the top boundary, the node in the middle of the bottom was kept fixed. Along all

boundaries, all derivatives of the modulus of the deformation rate (Eq. 24) were

set at zero analogously to elasto-plastic FE-solutions where the derivative of the

plastic multiplier is assumed to be zero at boundaries (Pamin 1994, de Borst and

Pamin 1996).

To obtain a shear zone inside the specimen, a weaker element with a high

initial void ratio, e0 D 0:90, was inserted at mid-point of the specimen.

For the solution of a non-linear system, a modified Newton-Raphson scheme

with line search was used with a global stiffness matrix calculated with only first

term of the constitutive equations (linear in dkl/. The stiffness matrix was updated

every 100 steps. To accelerate the calculations in the softening regime, the initial

increments of displacements in each calculation step were assumed to be equal

to the final increments in the previous step. The iteration steps were performed

using translational convergence criteria.

The gradient hypoplastic constitutive model was implemented in the author’s

finite element code.

5. FE-Results

5.1. Classical Continuum

Figures 5 and 6 present the results of plane strain compression with dense sand

(eo D 0:60) within a conventional (local) continuum (Eqs. 1–17) under confining

pressure ¦ c D 0:2 MPa (Tejchman 2003). The normalized load-displacement curve

is depicted in Fig. 5a. Figure 5b shows the deformed FE-mesh with the distribution

of void ratio. The darker the region, the higher the void ratio. The evolution of

the void ratio e; density factor fd (Eq. 10), modulus of the deformation rate d

(Eqs. 6) and Lode angle � (Eq. 16) at two different locations: inside the shear

zone and far beyond it are demonstrated in Fig. 6.

The resultant vertical force on the specimen top P increases first, shows a pro-

nounced peak, drops later and reaches a residual state (Fig. 5a). The overall angle

of internal friction for the sand specimen, calculated from Mohr’s formula
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Fig. 5. Load-displacement curve and deformed FE-mesh with the distribution of void ratio in the
residual state (local continuum, eo D 0:60, ¦ c D 0:2 MPa)

� D arcsin
¦1 � ¦3

¦1 C ¦3
(28)

is equal to �p = 42.7o at peak (u=h0 = 2.36% ). At residual state, it is equal to
�cr = 32.0o (u=h0

¾D 5%). In Eq. 28, ¦1D P=.bl/ denotes the vertical principle
stress, ¦3 D ¦c is the horizontal principal stress, b D 0:02 m is the specimen width,
l D 1:0 m (due to two-dimensional calculations) and u donotes the vertical dis-
placement of the top.

At the beginning of the compression process, two intersecting shear zones
emerge expanding outward from the weakest element in the middle of the spe-
cimen (Tejchman 2004b). Afterwards, and up to the end, only one shear zone
dominates. The complete shear zone is already noticeable shortly after the peak.
It is characterized by both a concentration of shear deformations, and a significant
increase of the void ratio and modulus of the deformation rate. The calculated
thickness of the shear zone is equal to the width of finite elements and its inclin-
ation to the mesh orientation (Fig. 5b).
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Fig. 6. Evolution of void ratio e (A), density factor fd (B), modulus of the deformation rate d (C)
and Lode angle � (D) (a – outside the shear zone, b – in the shear zone)

The void ratio e at the beginning decreases (up to u=h0 D 1%) and after-
wards increases in the whole specimen (Fig. 6A). In the shear zone, it reaches
a pressure-dependent critical value at residual state (e D ec D 0:745, Eq. 13). Bey-
ond the shear zone, the void ratio reaches the initial value. The thickness of the
shear zone on the basis of an increase of the void ratio is slightly larger, since
a dense granular material already dilates before a shear zone forms.

The density factor fd (Eq. 10) continuously increases in the whole specimen
(Fig. 6B). At residual state, it is equal to 1.0 (shear zone) and 0.8 (remaining
region).

The modulus of the deformation rate d increases uniformly in the whole spe-
cimen at the beginning of loading, to u=h0 = 2.2%. Later, it is significant only in
the shear zone (Fig. 6C). It increases strongly in the range of u=h0 D 2 � 3%. Af-
terwards, it decreases and approaches an asymptote. On the basis of the difference
between the modulus of the deformation rate in the shear zone and beyond it,
one can find that the shear zone occurs before the peak of the load-displacement
curve at u=h0 D 2:2%.

The Lode angle � (Eq. 13) is equal to 30o in the shear zone and 25o beyond
the shear zone (residual state), Fig. 6D.
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5.2. Gradient Continuum

The results with the modulus of the deformation rate enhanced by its second
gradient dŁ (Eq. 24) for dense sand (eo D 0:60; ¦ c D 0:2 MPa) are shown in Figs.
7–12.

The greater the characteristic length, the greater both the maximum normal-
ized vertical force on the top, and the greater the vertical displacement of the
top corresponding to the peak and residual force (Figs. 7 and 9). The material
becomes more ductile with increasing l : The size effect due to l=L (L D h0/ is
for dense sand almost linear (Fig. 9). In reality, this effect could be greater due
to the fact that the characteristic length influences the material properties (e.g.
the larger mean grain diameter, the greater both the maximum internal friction
and dilatancy angles). The mean angles of internal friction for the entire sand
specimen are equal to �p D 42:8Ž � 43:3Ž (at peak). The residual internal friction
angle, 32.2Ž, is not influenced by l in the investigated range:The obtained results
of internal friction angles at peak and in the residual state in dense sand, and
the corresponding vertical displacements of the sand specimen compare well with
experimental results with Karlsruhe sand carried out by Vardoulakis and Gold-
scheider (1981), Fig. 13. In the plane strain compression tests by Vardoulakis and
Goldscheider (1981) the dimension of the specimen were: h0 = 140 mm, b = 40
mm and l D 80 mm. The experiments with very dense sand (eo = 0.55) resulted
in �p = 45.0o and �cr = 32.9o at ¦ c = 200 kPa. The shape of the calculated
load-displacement curves is close to the experimental one. However, the calcu-
lated stiffness is too high before the peak (in the hardening region).

Fig. 7. Normalized load-displacement curves (gradient continuum, eo = 0.60, ¦ c = 0.2 MPa):
a) l = 0.0 mm;b) l = 0.5 mm, c) l = 1.0 mm, d) l = 2.0 mm

The thickness of the internal shear zone grows with increasing l and is (on
the basis of shear deformation): tsz

¾D 5:5 mm D 11ð l .l D 0:5 mm), tsz
¾D 7:3
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Fig. 8. Deformed FE-meshes with the distribution of void ratio at residual state at u=h0 = 5%
(a, b) and u=h0 = 10% (c) (gradient continuum, eo = 0.60, ¦ c = 0.2 MPa):

a) l = 0.5 mm; b) l = 1.0 mm, c) l D 2 mm

Fig. 9. Relationship between the normalized maximum vertical load P=¦cbl) and the ratio (l=L)
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mm ¾D 7 ð l .l D 1:0 mm) and tsz
¾D 11:2 mm ¾D 5 ð l .l D 2:0 mm), Fig. 8. If the

characteristic length is greater than l D 2:5 mm, the shear zone does not appear
and the diffuse deformations are concentrated at the bottom of the specimen.
The calculated thickness of the shear zone in dense Karlsruhe sand with l D 1
mm is in accordance with the observed thickness during experiments at ¦ c =
200 kPa: tsz D 13 ð d50 (Vardoulakis 1977, 1980, Vardoulakis and Goldscheider
1981) and 10 ð d50 (Yoshida et al 1994) (d50 D 0:4 � 0:5). Thus, one can assume
that the characteristic length of the gradient continuum is equal to two mean
grain diameters in the case of Karlsruhe sand i.e. l ¾D 2 ð d50 (as in the non-local
hypoplastic continuum, Tejchman 2003, 2004a). The thickness of the shear zone
is not affected by the mesh size (Fig. 14). The results of Fig. 14 were obtained
with the FE-mesh consisting of 1280 quadrilateral elements (0:125 ð 0:125 cm2/

divided into 5120 triangular elements.

The void ratio (Fig. 10) and the density factor (Fig. 11) in the shear zone are
slightly smaller in the residual state than in the conventional continuum (Figs. 6A
and 6B): e = 0.742 and fd D 0:987.

Fig. 10. Evolution of void ratio e inside the shear zone (gradient continuum, l = 1.0 mm,
eo = 0.60, ¦ c = 0.2 MPa)

On the basis of the evolution of the gradient modulus of deformation in the
shear zone (Fig. 12) at the beginning of loading, one can deduce that the shear
zone occurs slightly before the peak of the vertical force on the top at u=h0

= 2.2% (the peak value appears at u=h0 = 2.5% with l D 1 mm). The second
gradient of d becomes noticeable only in the shear zone during softening. After
the peak, the enhanced modulus dŁ is smaller than the local one d.

Compared to non-local (Tejchman 2003, 2004a) and polar (Tejchman et al
1999, Tejchman 2004b) numerical analyses, the gradient theory provides similar
robust FE-results. However, it requires less computation time than the non-local
one and is easier to implement than the polar one.
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Fig. 11. Evolution of density factor fd inside the shear zone (gradient continuum, l D 1:0 mm,
eo D 0:60, ¦ c D 0:2 MPa)

Fig. 12. Evolution of the modulus of the deformation rate d (a) and dŁ (b) in the shear zone
(gradient continuum, l = 1.0 mm; eo = 0.60, ¦ c = 0.2 MPa)

6. Conclusions

The FE-calculations of a plane strain compression test for granular materials
demonstrate that the mesh dependence inherent in classical plasticity is remedied
using the gradient approach allowing for robust localization computations.

The gradient hypoplastic model provides full regularization of the boundary
value problem during plane strain compression.

The normalized vertical force on the top increases linearly with increasing
characteristic length (using the same parameters as other material).

The thickness of the localized shear zone increases with increasing character-
istic length.

The characteristic length of the gradient approach can be calibrated for dif-
ferent sands with a numerical analysis of a laboratory plane strain compression
test.
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Fig. 13. Experimental load-displacement curve from a plane strain compression test (Vardoulakis
and Goldscheider 1981) (¦ 3 – lateral pressure, u2 – vertical displacement of the top surface)

Fig. 14. Deformed FE-mesh at residual state at u=h0 = 5% (dense mesh, gradient continuum,
eo = 0.60, ¦ c = 0.2 MPa)
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Lisse, 77–83.

Pamin J. (1994), Gradient Dependent Plasticity in Numerical Simulation of Localisation Phenom-
ena, PhD Thesis, Delft University.

Peerlings R. H. J., Borst R. de, Brekelmans W. A. M., Geers M. G. D. (1998), Gradient-Enhanced
Damage Modelling of Concrete Fracture, Mechanics of Cohesive-Frictional Materials, 3,
323–342.

Pestana J. M., Whittle A. J. (1999), Formulation of a Unified Constitutive Model for Clays and
Sands, Int. J. Num. Anal. Meth. Geomech., 23, 1215–1243.



264 J. Tejchman

Pijaudier-Cabot G. (1995), Non Local Damage, Continuum Models for Materials with Microstruc-
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