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Abstract

In this paper, a new contact-free method for monitoring the displacement of bur-
ied foundations, with application to model (laboratory) studies, is considered. This
method is based on the measurement of the magnetic induction amplitude created
by a magnetic dipole attached to the construction. An array of sensing coils, loc-
ated distantly, measures the changes in magnetic induction amplitude invoked by
displacement of the signal source. The forward and inverse problems are formulated.
Reconstruction of the source displacement is performed for synthetic data, both con-
taminated and uncontaminated by noise. It has been found that the reconstruction
of displacements as small as 0.001 m is possible for distances between signal source
(transmitting coil – magnetic dipole) and coil array of 0.5 m, even for data contam-
inated by noise.
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1. Introduction

The design of deep foundations requires knowledge of the lateral loading for
different types of soil. Determination of the distribution of the load acting on
a single pile or group of piles due to a weak layer is one of the more challenging
problems in geotechnics. Additional lateral load is caused by external – usually
vertical – forces of known value, e.g. high-road embankments located in the vicinity
of the pile structure. As a result, laterally loaded piles are deformed or deflected
in a way that cannot be easily described and/or measured. Many different methods
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are available to measure this deflection precisely, such as laser methods (Kura-
łowicz, Meißner 1994, Kurałowicz 2001). However, the application of most of
them is limited only to transparent materials. A few attempts to measure pile
deflection have been undertaken in laboratory scale studies, using tensometric
and string sensor methods. Tensometric methods, however, are sensitive to the
soil moisture, and subject to mechanical destruction, while string methods cannot
be used when a weak layer is consolidated before invoking lateral load of pile.

A new method, based on the measurement of an induced magnetic field is
described. The actual measurement system encompasses a magnetic signal source
and a receiver. Two different approaches for measuring the distance between the
source and receiver may be conceived. A first approach involves the measurement
of the signal delay arising from a change in a propagation distance. However, in
practice, it seems impossible to achieve the time-resolution required to discern
the relatively small changes in distance between source and receiver. As an al-
ternative, the amplitude decay along the distance from the source measurement
may be utilized. Measurement systems based on this concept, however, have to
meet several requirements in order to guarantee their accuracy. In particular, the
amplitude of the signal source has to be stable during the complete acquisition
time, while the character of the amplitude decay should be independent of the
properties of the surrounding medium, and known explicitly.

2. Method

The method proposed here is based on the measurement of the decay in magnetic
flux density along the distance from the source. A schematic representation of the
experimental setup modelled in the study is depicted in Fig. 1. The examined pile
is located in a glass container, encaged in a metal frame, and filled with sand.
A set of transmitters, marked T, are attached to its side. An array of receivers,
each marked Rc, is located at a distance L from the pile. The receivers are placed
on a plane outside the container. Though presenting an experimental setup, it
has to be mentioned that only theoretical considerations are presented in this
paper. However, the theoretical model studied here, will reflect the anticipated
experimental conditions.

It should be taken into account, however, that the magnetic flux also depends
on the magnetic properties of the material in which it propagates. Specifically,
the magnetic flux has to satisfy the boundary conditions at the interfaces between
materials described by different magnetic permeability values (Jackson 1982). The
amplitude of the field changes at each interface, according to the appropriate
boundary conditions. Hence, the amplitude of the magnetic field will depend on
the source-receiver distance, as well as the parameters describing the materials
involved in the measurements. However, many materials, including different types
of soil, are appropriately described by the magnetic permeability of the vacuum.
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Fig. 1. Model of an experimental stand used in the study, Rci and Ti represent receiving and
transmitting coils, respectively. Transmitting coils Ti are attached to an examined pile while the
array of the receiving coils Rci is located adistance and outside the container. Lateral load is
applied by means of metal plate and hydraulic press. The upper end of the pile is prevented

from movement by means of the metal rod (anti-displacement rod)

This is equivalent to the assumption that the material between the source of the

magnetic field and the measurement point is homogenous.

2.1. Forward Problem

a) Magnetic source signal

Let us assume that a coil of radius a is energized by a current I (Fig. 2a). This

current creates a magnetic vector potential A
�

Ar ; A�; A�

Ð

given by the following

relationship

A D
¼I

4³

I

l

dl

r 0
; (1)
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Fig. 2. a) Co-ordinate system and notations used in the study; b) The receiving coil and magnetic
dipole; c) The model used for calculation of the flux 8 of the magnetic induction B, associated
with the magnetic dipole m(0; 0; mz/, through the receiving coil of the radius R and located on

the plane z D Z

where l is the length of the loop (coil), dl is the incremental length, and r 0 is the
distance between the incremental length dl of the coil located at the point S and
the point of observation P(²; �; z) (Fig. 2). The magnetic induction B

�

Br ; B�; B�

Ð

can be determined based on knowledge of vector potential A, and the relation
B D rð A (for details see Appendix 1)

Br D
1

r sin �

@

@�

�

A� sin �
Ð

D
¼

4³
a2³ I

2 cos �

r 3
I (2)

B� D �
1

r

@

@r

�

r A�

Ð

D
¼

4³
a2³ I

sin �

r 3
; (3)

where ¼ is the magnetic permeability.

The relations (2) and (3) have been obtained by assuming the observation point
to be relatively distant from the coil, or alternatively that the coil radius is small
compared with the distance between coil and observation point. The component
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B� is equal to zero due to the symmetry of the problem. Hence, the magnetic field
components are found to have exactly the same form as the components of the
electric field created by an electric dipole (Januszajtis 1982). In this way, a small
circular loop can be identified as a magnetic dipole with moment m D ³a2 In, n

being the unit vector normal to the surface of the coil. The relationships (2) and (3)
can be used to evaluate the distance from the magnetic dipole (i.e. transmitting
coil) (Weber 1957, Januszajtis 1982). A Cartesian co-ordination system will be
used in our study, requiring the magnetic field components to be transformed
appropriately. The components of the magnetic induction B

�

Bx ; By ; Bz

Ð

at the
point P.x ; y; z/ for the magnetic dipole m, located at the point P.xm; ym; zm/ (see
Fig. 2b) can be obtained from the relations (2, 3) (Januszajtis 1982, Dunajski
1990) in the following form

Bx D
¼

4³ r 5

h

mx

�

2x 02 � y 02 � z02
�

C 3my x 0 y 0 C 3mzx
0z0
i

; (4)

By D
¼

4³ r 5

h

my

�

2y 02 � x 02 � z02
�

C 3mx x 0 y 0 C 3mz y 0z0
i

; (5)

Bz D
¼

4³ r 5

h

mz

�

2z02 � x 02 � y 02
�

C 3mx x 0z0 C 3my y 0z0
i

; (6)

where x 0 D x � xm, y 0 D y � ym, z0 D z � zm and r 2 D .x � xm/2 C .y � ym/2 C

.z � zm/2.

With the transmitting coil located on the plane z = 0, and with the direction
of the current I being counter clockwise, the magnetic dipole exhibits only one
non-zero component, i.e. m .0; 0; mz/. In this particular case, (4)–(6) reduce to:

Bx D
3¼mzxz

4³ r 5
I By D

3¼mz yz

4³ r 5
I Bz D

¼mz

�

2z2 � x2 � y2
Ð

4³ r 5
: (7)

b) Magnetic flux detector

The magnetic induction B can be measured by means of a receiving coil
(Fig. 2c). Actually, it is the magnetic flux 8 flowing through a coil located on
the plane z=constant that is measured, instead of the magnetic field itself. The
relationship between these quantities is given by the integral:

8 D

Z

S

B Ð ds D

Z

S

Bzds; (8)

where S is the area of the receiving coil, with the unit vector of the coil being
oriented along the z co-ordinate.

Taking into account relation (7), the magnetic flux 8 is given by
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8 D

Z

S

¼mz

4³

�

3z2

r 5
�

1

r 3

�

ds: (9)

The notational conventions are illustrated in Fig. 2c.
Despite considering only one particular case of the relation between the mag-

netic dipole and the receiving coil (see Appendix 2), these results can be gener-
alized to the form

Ui B D mz Ki .r /; (10)

where Ki .r / is the proportionality coefficient of i th coil, the value of which de-
pends on the distance between dipole and the receiving coil. Thus, the voltage
change due to a small displacement 1r of the transmitting coil is approximated
as

1Ui B D mz .r /
@ Ki .r /

@r
1r C Ki .r /

@mz .r /

@r
1r: (11)

The second term in (11) is omitted in the considerations that follow, assuming
that the deflection of the buried object does not change the value of mz.

2.2. The Inverse Problem

Finding the position and parameters of the magnetic dipole requires the solution
of an inverse problem (a short introduction to the inverse problem, including
a comprehensive example, is given in Appendix 3). The complexity of the con-
sidered problem is significantly reduced upon assuming that the moment of the
magnetic dipole is known. Thus, the searched parameters are those describing the
localization and the direction of the dipole. In a first attempt, it is assumed that
the direction of the dipole moment is fixed (cf. description of relation (11)). The
problem is then stated as follows: find the displacement value of the dipole given
two sets of measurement data. In general, the relationship between the meas-
ured value of magnetic flux and the displacement of the dipole is non-linear. The
inverse problem can be solved using different approaches, categorized as determ-
inistic or probabilistic. In the presented study, the least squares method has been
adopted. Moreover, the change in distance between source and receiver is used as
the search parameter, instead of the absolute distance. This differential approach
is known to be more resistant to noise, and interferences, than the absolute one.
For an array of receiving coils (Fig. 3), a misfit function can be defined as the
difference between the measured 1Um and the calculated values 1Uc (Meju 2001,
Kurałowicz, Wtorek 2002, Wtorek 2003)

e D 1Um �1Uc; (12)
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Fig. 3. a) The geometrical relation (perspective view) between the array of the receiving coils and
the source of magnetic signal; b) The geometrical relation of the transmitter and receivers (lateral

view); Rci stands for i th receiving coil while m for magnetic dipole, c is the distance between the
receiving coils (in the study c D 0:08 m has been assumed)

where 1Um D Um .r0 C1r /� Um .r0/ is the measured difference, 1Uc is the cal-
culated difference using the adopted model, i.e. relations (4)–(6). The square of
the error e is thus given by the relation (Meju 2001, Wtorek 2003)

eTe D
�

1Uc �1Um
ÐT �

1Uc �1Um
Ð

: (13)

The change in the calculated value can be approximated using a Taylor expan-
sion

1Uc D Uc .r0 C1r /� Uc .r0/ D
@Uc .r/

@r jrDr0

Ð1r C 0
�

k1rk2
�

: (14)

Hence, a linearised version of (13) is given by

eTe D
�

S1r �1Um
ÐT �

S1r �1Um
Ð

; (15)

with S being the derivative (Jacobian) presented in the equation (14). The least
square solution of (15) is (Meju 2001, Oristalgio, Blok 1995)

1r D
�

STS
Ð�1

ST1Um: (16)

In general, inverse problems are ill-conditioned, i.e. a small error in the
data may lead to large changes in the estimated vector of displacement 1r.
The Levenberg-Marquardt modification of the solution (16) has been used in
the case of data contaminated by noise (Meju 2001, Wtorek 2003, Brandt 1988,
Janczulewicz, Wtorek 2003, Janczulewicz, Wtorek 2003a)

1r D
�

STSC ½ Ð diag
�

STS
ÐÐ�1

ST1Um; (17)

where ½ is called the regularization constant.
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Fig. 4. a) Dependence of the magnetic induction Bz (flux density) generated by the transmitting
coil on the distance from the coil along its axis; b) Dependence of the magnetic flux density rate
on the distance from transmitting coil along its axis. Normalized values are shown. The letter a

represents the radius of the transmitting coil

3. Results

Values of the magnetic induction Bz , and its decay rate d Bz=dz, as a function of

the distance along its axis from the surface of the source coil, were calculated

for different values of the coil radius a (see Fig. 4). The values of Bz and its

decay rate d Bz=dz were normalized by the maximal value of Bz and d Bz=dz, re-

spectively. The distance from the coil was instead normalized with respect to coil

radius a. Then, an inverse problem was solved using relation (16) for synthetic

data without noise. These synthetic data were calculated, according to relation

(6), for the arrangement of transmitting and receiving coils shown in Fig. 3. In

particular, an array of fifteen receiving coils, arranged in three rows, each con-

taining five coils, was applied (Fig. 3). The transmitting coil was located on the

axis of the middle receiving coil (Fig. 3b). Results of the calculations for three

different distances between transmitting coil and array, assuming noiseless data,

are presented in Fig. 5a. The deflections presented in Fig. 5b were calculated for

the same data, however, with three different levels of noise added. In general, the

associated inverse problems are ill-conditioned, and thus are very sensitive to the

noise level. To overcome this problem a regularized solution was computed (17).

The value of the regularization constant ½ was assumed to be 0.05. The depend-

ency of the reconstructed value 1rr on the actual displacement of the source 1ra

is represented in Fig. 5c for three different noise levels, SNR = 40 dB, SNR =

26 dB, SNR = 20 dB, and assuming a fixed distance between the transmitting

coil and the array, L = 0.5 m. Next, the calculations were repeated in Fig. 5d

for three different distances, L = 0.3 m, L = 0.4 m, L = 0.5 m, with the data

contaminated by noise such that SNR = 26 dB.
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Fig. 5. Reconstructed 1rr vs. actual displacement 1ra of the signal source: a) simulation study for
three different distances, L = 0.3 m, L = 0.4 m, and L = 0.5 m, between the source and the
receiving coils, synthetic data for the reconstruction do not contain noise, note that all curves

overlap each other; b) simulation for the fixed distance, L = 0.5 m, between the source and the
receiving coils and for data containing noise, continuous line – SNR = 40 dB, dotted line – SNR
= 26 dB, dashed line – SNR = 40 dB, reconstruction without regularization; c) simulation for the
fixed distance between source and receive coils and for data containing noise, continuous line –
SNR = 40 dB, dotted line – SNR = 26 dB, dashed line – SNR = 20 dB, reconstruction with

regularization; d) Reconstructed displacement for data containing the same level of noise (SNR =
40 dB), however, for three different distances between signal source and array of receiving coils:

L = 0.30 m – continuous line, L = 0.40 m – dotted line, and L = 0.50 m – dashed line
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4. Discussion

The magnetic flux density generated by a coil of diameter a decreases very fast,
and non-linearly, with the distance from the coil (Fig. 4). Determination of the
displacement of the signal source is consequently a strongly non-linear problem.
However, the problem can be linearised in a first attempt, by assuming that the
change of flux be proportional to the source deflection. This coefficient of pro-
portionality is equal to the derivative of the magnetic flux density. In this study,
a magnetic dipole approximation is assumed, which is valid as long as z × a

(Fig. 4), i.e. a large distance between the transmitting coil (the magnetic dipole)
and the plane containing receiving coils. The condition z × a also allows the re-

lation between the change in magnetic flux density and the measured voltage to
be approximated by a simple proportionality relation.

Noticeable is that the curves for Bz and d Bz=dz are almost horizontal for larger
distances from the transmitting coil. This means, that only larger displacements
may produce significant changes in flux, and thus in measured voltage. It also

explains the ill-conditioned nature of the problem. The change of the measured
difference may be approximated by equation (11). The derivative of this function,
however, is almost zero for large distances. Taking into account that both the
derivative and the displacement are small, the measured signals will also be very
small, and hence be very susceptible to noise. Nevertheless, promising results are
obtained for noiseless data (Fig. 5a).

The relationship between the actual displacement 1ra and the reconstructed
1rr is almost linear, and similar for all three distances between transmitting coil
and array of receiving coils considered here; 0.3 m, 0.4 m and 0.5 m. However, this
is a hypothetical case, as it cannot occur in real situations, such as represented in
Figs. 5b, 5c and 5d. Reconstructions for different levels of noise have been carried
out, with and without regularization. In the latter case the regularization coeffi-
cient is set at 0.05. All the presented results are characterised by relatively large
variances. Nevertheless, it is shown that even in the presence of noise, displace-
ment information can be gained from the measurement of variations in magnetic

flux density.

The diameter of the receiving coils can be increased in further studies. This
may improve the signal to noise ratio (SNR) of the measurement system. Coils
may even overlay each other. In determining the distance c between the receiving
coils (cf. Fig. 3b), the SNR value is also a crucial factor. The smaller the distance

between the receiving coils, the higher the SNR value of the measurement system
should be. Notice, however, that for small values of c, the distances between
the dipole and the receiving coils are almost equal, and according to relation
(9) the measured fluxes will also be equal. This distance should be considered
as a relative value, referenced to the distance between the magnetic dipole (or
more generally, the signal source) and the plane containing the receiving coils.
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The distance between the receiving coils was kept fixed in this study. Thus, for
a fixed distance between the receiving coils, an increase of the distance between
the transmitting coil and the array of the receiving coils is equivalent to the
requirement of a higher SNR value.

It is important to emphasize that application of the described method is fore-
seen in experiments with non-magnetic soils, i.e. the magnetic permeability of
the soil used in experiments should be equal to that of vacuum. Otherwise, the
assumption that boundary effects can be ignored, would no longer be valid.

Another important phenomenon, which has to be taken into consideration in
further studies, is the rotation of the transmitting coil. In general, transmitting
coils attached to deep foundation can either be displaced or rotated. This would
demand the reconstruction algorithm, currently based on relations (16) and (17),
to be reformulated in more general terms, i.e. including rotational components.

5. Conclusions

It has been demonstrated that the displacement of a magnetic dipole can be mon-
itored by multiple and simultaneous measurement of the magnetic flux density.
The accuracy achieved is very promising, even for data contaminated by noise. It
has been found that signals with an SNR as low as 40 dB are still acceptable. These
values are easily achieved in practical measurement conditions, which makes the
method a viable candidate to monitor the deflection of buried constructions (deep
foundations) in laboratory scale studies.
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Appendix 1

In a cylindrical coordinate system, the vector potential is described by the relation
(1), which for a current I , flowing in a coil of radius a, transforms to the following
expression (Weber 1957)

A� D
¼I

4³

2³
Z

0

ð

ur a sin � C u�a cos �
Ł

h

.² � a cos �/2 C .a sin �/
2
C z2

i1=2
d�; (A1)

where � is the angle between the current position of dl and the projection of
observation point P on plane z D 0 (see Fig. 2a), and ur and u� are respectively
radial and tangential unit vectors, A� is the magnetic vector potential, while ²

stands for the radial coordinate, � for the azimuth coordinate (cylindrical co-
ordinate system), ¼ for the magnetic permeability. Taking into account that the
first component of (A1) is in the radial direction, and thus can be disregarded, the

integral is reduced to the tangential component only. Introducing r D
�

²2 C z2
Ð1=2

(see Fig. 2a), the relationship (A1) can be rearranged as

A� D
¼I

4³

2³
Z

0

ð

ur a sin � C u�a cos �
Ł

ð

a2 C r 2 � 2²a cos �
Ł1=2

d�: (A2)

Assuming that the vector potential A is calculated for points distant from the
coil, i.e. r × a, one obtains

A� D
¼I

4³

2³
Z

0

ð

ur a sin � C u�a cos �
Ł

r
ð

1�
�

2²a
Ž

r 2
Ð

cos �
Ł1=2

d�: (A3)

Then, expanding the square root of the denominator binomially, and retaining
the first two terms, gives

A� ³

2³
Z

0

a

r
cos �

�

1C
a²

r 2
cos �

½

d� D
¼a2 I

4³

²

r 3
: (A4)

Using spherical coordinates, with ²=r D sin � , and taking into account that r ³

r 0 (see Fig. 2), the components of the magnetic fields calculated from the relation
B D rð A, are given by relations (2), (3) expressed in the spherical coordination
system.
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Appendix 2

The flux through the receiving coil is given by relation (9)

8 D

Z

S

¼mz

4³

�

3z2

r 5
�

1

r 3

�

ds: (A5)

Taking into account that ds D ²d�d² allows relation (A5) to be transformed
into the following form

8 D
¼mz

4³

R
Z

0

2³
Z

0

�

3z2

r 5
�

1

r 3

�

²d'd²: (A6)

The distance r between the magnetic dipole and a current point of the area
of the receiving coil is given by the equation (see Fig. 2c)

r D
�

²2 C Z2
�1=2

: (A7)

The problem is axially symmetrical such that the double integral in (A6) re-
duces to

8 D
¼mz

2

R
Z

0

 

3Z2

�

²2 C Z2
Ð5/2
�

1
�

²2 C Z2
Ð3/2

!

²d²: (A8)

The solution is of the form

8 D
¼mz

2

�

�

²2 C Z2
��1/2

� Z2
�

²2 C Z2
��3/2

½þ

þ

þ

þ

R

0

: (A9)

Introducing the limits of integration, one obtains

8 D
¼mz

2

"

1
�

R2 C Z2
Ð1=2
�

Z2

�

R2 C Z2
Ð3=2

#

; (A10)

which after rearranging, finally yields the relation describing the flux through the
receiving coil of radius R:

8 D
¼mz

2

"

R2

�

R2 C Z2
Ð3=2

#

: (A11)

The notational conventions are clarified in Figure 2c. Hence, the relationship
between the moment of the magnetic dipole, and associated flux, can be written
in the form of equation (10).
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Appendix 3

Remarks on the Inverse Theory

Inverse theory is an organized set of mathematical and statistical techniques for
retrieving useful information about a physical system from controlled observations
of the system (Oristalgio, Blok 1995). It is directly concerned with the analysis of
experimental data, the fitting of mathematical models to these data by estimating
the unknown parameters of these models, and optimal experimental design. As
a matter of fact, anyone that has fitted a line to a set of numerical data has
practised inverse theory. The level of application of the inverse theory may range
from the simple straight-line fitting to more sophisticated problems. In an abstract
form, the inverse problem can be cast simply as the solution of a set of non-linear
equations:

Fk[m]� dk D 0; k D 1; :::; K; (A12)

where m D [m1; m2; m3; :::; mN]T is a model of N model parameters, Fk is
a (non-linear) function that maps the model to the data dk, with K the total
number of data points. Note that the displacement vector is the model parameter
in this study. Equation (A12) can be treated by standard methods for the solu-
tion of non-linear equations. The most popular of these certainly are the iterative
methods. Among them, the Newton iterative method is obtained by expanding
Fk[m], with

Fk

ð

m.i/ C Žm.i/
Ł

� dk D 0; k D 1; :::; K (A13)

in a multi-dimensional first-order Taylor series about the current estimate m.i/

Fk

ð

m.i/
Ł

C

N
X

nD1

@ Fk

@mn
Žm.i/

n D dk: (A14)

Rearranging this expression gives a set of K ð N equations to be solved for
the model perturbations Žmn

N
X

nD1

@ Fk

@mn
Žm.i/

n D dk � Fk

ð

m.i/
Ł

: (A15)

The right-hand side is exactly the error (residuum) at the i th iteration.

e
.i/
k D dk � Fk

ð

m.i/
Ł

D Žd
.i/
k : (A16)

In matrix form this gives

SŽm D Žd; (A17)
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where S is the matrix of partial derivatives. The superscripts indicating the iter-
ation have been omitted here. A new update for the adopted model is obtained
as mnew  mold C Žm after solving for Žm. This process is repeated until con-
vergence (or aborted if convergence does not appear). In case the number of
measurements is greater than the number of model parameters the K ð N sys-
tem is overdetermined, and a solution is computed from the normal equations

SHSŽm D SHŽd: (A18)

The least squares solution is given by

Žm D
�

SHS
Ð�1

SHŽd; (A19)

where the superscript H denotes the Hermitian matrix. A regularized least square
solution (Oristalgio, Blok 1995, Janczulewicz, Wtorek 2003, Janczulewicz, Wtorek
2003a) instead is computed according to

Žm D
�

SHSC ½2RHR
��1

SHŽd; (A20)

where ½ is the regularization coefficient, R is the regularization matrix. A possible
choice is R = I.

Example

If the inverse problem can be represented by means of the explicit linear
equation d D Gm it is said to be linear. Here, d, G, and m, stand for the data,
the model, and the parameters, respectively. The problem then is to determine m

given the data d and the assumed model G. Let us consider an example of linear
regression, a problem encountered in a variety of applications. For a collection
of n data pairs f.x1; y1/ ; :::; .xn; yn/g we are looking for a line y D a C bx . Hence,
the model is described by only two parameters. For n > m, where m is the number
of parameters considered, the problem is overdetermined, i.e. number of meas-
urements is larger than the number of unknowns. As the matrix G is no longer
square one may compute a solution by means of the generalized inverse

ˆ
m D

�

GTG
Ð�1

GTd: (A21)

The relation between the data and the model parameters is described by the
matrix equation
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�

a

b

½

: (A22)

In the regression problem considered here, G and GT are given by
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G D
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: (A23)

such that
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while the inverse (GTG)�1 can be computed analytically
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The vector GTd is determined by
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�
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Finally, the parameters of the fitted line are computed from the matrix relation
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Each data pair satisfies the line relation to a certain degree, i.e. yi D a C bxi C

"i , where "i is the vertical distance between i th data point and the regression line.
The quantity "i is named the residual, misfit, or prediction error.

Appropriate values for the parameters a and b are computed by a least squares
method. In doing so, the error " will be minimised by determining the values for
the parameters a and b, such as to minimize the sum over the squared residuals

" D

n
X

iD1

"2
i D

n
X

iD1

.yi � a � bxi /
2: (A28)
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Differentiating " with respect to a and b, and setting the derivatives to zero,
the following equations are recovered

@"

@a
D 2

n
X

iD1

.yi � a � bxi / .�1/ D 0I (A29)

@"

@b
D 2

n
X

iD1

.yi � a � bxi / .�xi / D 0: (A30)

The parameters a, b can be computed directly from (A29) and (A30)
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: (A31)

A comparison of the results obtained by these two methods is left for the
reader.
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