Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The versality of the compact disc (CD) has quickly become apparent to manufacturers and users alike. Exceeding the expectations of even its most ardent supporters, the CD holographic disc storage system has become one of the most successful consumer electronics products ever introduced. The phenomenal success of the audio CD on the eager worldwide marketplace has encouraged rapid development of CD technology and spawned entirely new high tech applications for the dimpled disc. The Mini Disc (MD), for instance, occupies about one-fourth the area of the standard CD-Digital Audio (CD-DA) format yet provides an identical playing time through efficient data reduction. The essence of digital audio lies in its numerical basis. It is the aim of the present paper to elaborate the mathematical principles underlying the audio CD as far as they are concerned to the format's electronic and holographic principles.
Wydawca
Rocznik
Tom
Strony
283--307
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Lehrstuhl fur Mathematik, Universitat Mannheim, Seminargebaude A 5,6, 68131 Mannheim, Germany
autor
- Lehrstuhl fur Mathematik, Universitat Siegen, Walter-Flex-Strasse 3, 57068 Siegen, Germany
Bibliografia
- [1] Leith E N 1978 Optical Data Processing, Casascnt D (Ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 89-117
- [2] Binz E and Schempp W 2000 Proc. 2nd International Workshop on Transforms and Filter Banks, Creutzburg R and Astola J (Eds.), Tampere International Center for Signal Processing, Tampere, Finland, pp. 571-589
- [3] Schempp W J 1998 Magnetic Resonance Imaging: Mathematical Foundations and Applications, Wiley-Liss, New York, Chichester, Weinheim
- [4] Biaesch-Wiebke C 1989 CD-Player und R-DAT Recorder, Second Edition, Vogel Buchverlag, Wurzburg
- [5] Pohlmann K C 1992 The Compact Disc Handbook, Second Edition, Oxford University Press, Oxford, New York, Toronto
- [6] Horowitz P and Hill W 1995 The Art of Electronics, Second Edition, Cambridge University Press, Cambridge, New York, Melbourne
- [7] Schempp W 1986 Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, London 147
- [8] Weil A 1964 Acta Math. 111 143
- [9] Binz E and Schempp W 1999 Aspects of Complex Analysis, Differential Geometry, Mathematical Physics and Applications, Dimicv S and Sekigawa K (Eds.), World Scientific, Singapore, New Jersey, London, pp. 314-365
- [10] Binz E and Schempp W 2000 Result. Math. 37 226
- [11] Binz E and Schempp W 2000 Proc. 15th European Meeting on Cybernetics and Systems Research, Trappl R (Ed.), University of Vienna and Austrian Society for Cybernetic Studies, Vienna, 1 123
- [12] Binz E and Schempp W 2001 Proc. 4th International Conference on Computing Anticipatory Systems, Liege, Belgium (in print)
- [13] Schempp W 1999 Math. Meth. Appl. Sci. 22 867
- [14] Schempp W 1999 Inverse Problems, Tomography, and Image Processing, Ramm A G (Ed.), Plenum Press, New York, London, pp. 129-176
- [15] Thomas G E 1988 Philips Technical Review 44 51
- [16] Kunze R A 1967 Proc. of a Conference at the University of Calfomia, Functional Analysis, Irvine, Gelbaum B R (Ed.), Thompson Book Company, Washington, D.C., pp 235-247
- [17] Kunze R A 1974 Pacific J. Math. 53 465
- [18] Atlas S W 2001 Megnetic Resonance Imaging of the Brain and Spine, Third Edition, Lippincott Williams & Wilkins, Philadelphia, Vols. I and II
- [19] Young I R (Ed.) 2000 Methods in Biomedical Magnetic Resonance Imaging and Spectroscopy, J. Wiley & Sons, Chichester, New York, Weinheim I and II
- [20] Boas Jr R P 1972 Tohoku Math. J. 24 121
- [21] Higgins J R 1985 Amer. Math. Soc. 12 45
- [22] Pollard H and Shisha O 1972 Amer. Math. Monthly 79 495
- [23] Schmeisser H J and Sickel W 2000 Applied Mathematics Reviews, Anastassiou G A (Ed.), World Scientific, Singapore, New Jersey, London, 1 205
- [24] Steiner A 1980 Amer. Math. Monthly 87 193
- [25] Deng B, Xiao C, Schempp W and Wu Z 2001 Existence of the Weyl-Heisenberg and Affine Frames, Manuscript (to appear)
- [26] Young R M 1980 An Introduction to Nonharmonic Fourier Series, Pure and Applied Mathematics Series, Academic Press, New York, London, Toronto
- [27] Donoghue Jr W F 1974 Monotone Matrix Functions and Analytic Continuation, Spronger-Verlag, Berlin, Heidelberg, New York
- [28] Schwartz L 1964 J. Analyse Math. 13 115
- [29] Bellman R 1961 A Brief Introduction to Theta Functions, Holt, Linehart and Winston, New York
- [30] Armitage J V and Rogers A 2000 J. Phys. A: Math. Gen. 33 5993
- [31] Binz E and Schempp W 2001 Space-Time Geometry and Quantum Information: Transmission, Encoding and Detection, Manuscript (to appear)
- [32] Bertoin J 1998 Levy Processes, Cambridge University Press, Cambridge, New York, Melbourne
- [33] Karatzas I and Shreve S E 1999 Brownian Motion and Stochastic Calculus, Second Edition, Springer-Verlag, New York, Berlin, Heidelberg
- [34] Gross K I 1978 Amer. Math. Monthly 85 525
- [35] Binz E and Schempp W 2001 The Levy Intensity Measure and the Third Kepplerian Law of Planetary Motion (to appear)
- [36] Binz E and Schempp W 2001 The Landsberg-Schaar Identity and the Real Heisenberg Nilpotent Lie Group (to appear)
- [37] Hardy G H 1988 A Mathematician's Apology, Foreword by Snow C P, Cambridge University Press, Cambridge, New York, New Rochelle
- [38] Borel A 1983 Mathematik: Kunst und Wissenschaft, Themen-Reihe der Carl Friiedrich von Siemens Stiftung XXXIII, Munchen In: Collected Papers, Springer-Verlag, Berlin, Heidelberg, New York, III 685
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0010-0079