PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Novel 3D inverse method for the design of turbomachinery blades in rotational viscous flow: theory and applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Seminar/summer school on "CFD for turbomachinery applications" (01-03.09.2001, Gdańsk, Poland)
Języki publikacji
EN
Abstrakty
EN
The development and application of a three-dimensional (3D) inverse methodology is presented for the design of turbomachinery blades. The design method is based on the specification of the blade loading distribution and the corresponding blade shape is systematically sought using directly the difference between the target and initial values. The design procedure comprises mainly of a CFD solver code and the blade-update algorithm to calculate the desired blade geometry as well as the corresponding 3D flow. The CFD code is a well-validated three-dimensional flow solver and has shock capturing ability to cope in both subsonic and high transonic-shocked, viscous flow. Fundamentally, it is a cell-vertex, finite volume, time-marching solver employing the multistage Runge-Kutta integrator in conjunction with accelerating techniques (local time stepping and grid sequencing). To account for viscosity, viscous forces are included in the solution using the log-law and mixing length models. The effects of rotating blades as well as tip clearance flow are also included in the flow prediction. The capabilities of the present method are demonstrated in the redesign of a transonic fan blade, the NASA Rotor 67. The redesign focuses on the shocked flow near the tip, where the effects of shock-boundary interaction and leakage flow are examined. The result shows conclusively that the shock-formation and its intensity in such a high-speed turbomachinery flow are well defined on the loading distributions. Simple guidelines to change the loading distribution can be followed using the proposed inverse methodology to improve the blade shape.
Słowa kluczowe
Rocznik
Strony
63--78
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Department of Mechanical Engineering, University College London, Torrington Place, WC1E 7JE London, United Kingdom
autor
  • Department of Mechanical Engineering, University College London, Torrington Place, WC1E 7JE London, United Kingdom
Bibliografia
  • [1] Casey M V 1994 AGARD LS 195, Turbomachinery Design Using C'FD
  • [2] Demeulenaere A and Van den Braembussche R A 1996 ASME Paper 96-GT-39
  • [3] Dulikravich G S and Baker D P 1999 AIAA Paper 99-0185
  • [4] Wang Z, Cai R, Chen H and Zhang D A 1998 ASME Paper 98-GT-126
  • [5] Dang T 1995 AIAA Paper 95-2465
  • [6] Ahmadi M and Ghaly W S 1997 Proc. 5th Conf. CFD Society of Canada CFD-97 2-15-2-21
  • [7] Tiow W T and Zangeneh M 1998 ASME Paper 98-GT-125
  • [8] Hawthorne W R, Tan C S, Wang C and McCune .1 1984 .J. Eng. for Gas Turbines and Power 106 346
  • [9] Tan C S, Hawthorne W R, McCune J E and Wang C 1984 .J. Eng. for Gas Tnrbines and Power 106 355
  • [10] Zangeneh M 1991 Int. J. Numerical Methods in Fluids 13 599
  • [11] Leonard O and Van den Braembussche R A 1991 ASME Paper 91-GT-18
  • [12] Goto A and Zangeneh M 1998 ASME Paper FEDSM98-4854
  • [13] Zangeneh M, Goto A and Harada H 1998 ASME J. Turbomachinery 120 723
  • [14] Ashihara K and Goto A 1999 ASME Paper FEDSM99-6846
  • [15] Watanabe H and Harada H 1999 ASME Paper 99-GT-72
  • [16] Demeulenaere A, Leonard O and Van den Braembussche R A 1997 Proc. Inst. Mech. Engrs., Part A, J. Power and Energy 211 299
  • [17] Damie S V 1998 Fully Three-Dimensional and Viscous Inverse Method for Turbomachinery Blade Design, PhD Thesis, Department of Mechanical Engineering. Syracuse University
  • [18] Tiow W T 2000 Inverse Design of Turbomachinery Blades in Rotational Flow. PhD Thesis, University College, University of London
  • [19] Damie S and Dang T 1998 ASME Paper 98-GT-115
  • [20] Tiow W T and Zangeneh M 2001 Proc. IMechE Symp. Advances of CFD in Fluid Machinery Design
  • [21] Qiu X and Dang T 2000 ASME Paper 2000-GT-0526
  • [22] Hall M G 1986 Proc. Conf. on Numerical Methods for Fluid Dynamics, eds. Morton K and Baines M J, Reading, UK, pp. 303-345
  • [23] Jameson A, Schmidt W and Turkel E 1981 AIAA Paper 81-1259
  • [24] Denton J D 1986 ASME Paper 86-GT-144
  • [25] Denton J D 1990 ASME Paper 90-GT-19
  • [26] He L and Denton J D 1994 ASME J. Turbomachinery 116 469
  • [27] AGARD-AR-275 1985 Test Cases for Computation of Internal Flows in Aero Engine Components
  • [28] Strazisar A J, Wood 3 R, Hathaway M D and Suder K L 1989 NASA Technical Paper 2879
  • [29] Jennions I K and Turner M G 1993 ASME J. Turbomachinery 115 261
  • [30] Arnone A 1994 ASME J. Turbomacionery 116 435
  • [31] Pierzga M J and Wood J R 1985 ASME J. Enegineering for Gas Turbines and Power 107 436
  • [32] Tiow W T and Zangeneh M 2000 ASEM Paper 200-GT-525
  • [33] Zangeneh M, Goto A and Takemura T 1996 ASME J. Turbomachinery 118 536.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0010-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.