PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical simulation of the influence of a fillet and a bulb on the secondary flow in a compressor cascade

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Seminar/summer school on "CFD for turbomachinery applications" (01-03.09.2001, Gdańsk, Poland)
Języki publikacji
EN
Abstrakty
EN
Large fillet radii are typically found on highly loaded compressor rotors to ensure structural integrity. The objective of this paper is to investigate the impact of such real geometry effects on the flow at the hub section. Investigations were performed numerically for the idealised case of a plane compressor cascade with the 3D Navier-Stokes code TRACE_S. Realistic inlet boundary layer displacement thickness and typical loading levels close to stall are considered at low inlet Mach numbers Ma1 = 0.23. A large fillet with a relative radius of 16% chord length is considered as well as a 3D leading edge bulb-configuration designed at TU Dresden. The results are discussed in terms of iso-Mach surfaces, secondary flow patterns and spanwise incidence and turning. A complex 3D vortex system rises from the fillet radius, which improves the aerodynamic behaviour of the cascade at the end-wall section. With the bulb configuration the suction surface horse-shoe vortex leg was demonstrated to weaken the undesirable cross flow and by that to reduce the hazard of corner stall.
Słowa kluczowe
Rocznik
Strony
25--37
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • MTU Aero Engines, Dachauer Strasse 665, 80995 München, Germany
  • MTU Aero Engines, Dachauer Strasse 665, 80995 München, Germany
autor
  • University of Valenciennes, UVHC BP 311, 59304 Valenciennes Cedex, France
autor
  • Dresden University of Technology, Institute of Fluidmechanics, D-01062 Dresden, Germany
autor
  • Dresden University of Technology, Institute of Fluidmechanics, D-01062 Dresden, Germany
Bibliografia
  • [1] Denton J D 1994 ASME J. Tubomachinery 113 621
  • [2] Debruge L L 1980 ASME J. Eng. for Power 102 984
  • [3] Curlett B P 1991 Rep. NASA-TM-105347
  • [4] Calvert W J and Ginder R B 1999 Proc. Instn. Mech. Engrs., Part C, J. Mech. Eng. Science 213 419
  • [5] Brcugelmans F A E 1999 VKI LS 1999-02 on Turbomachinery Blade Design Systems
  • [6] Escurct J F, Veysscyre Ph, Villain M, Savaresc S, Bois G and Naviere H 1997 ASME Paper 97-GT-471
  • [7] LeJambrc C R, Zacharias R M, Biederman B P, Gleixner A J and Yetka C J 1996 ASME Paper 95-GT-343
  • [8] Boos P, Mockel H, Henne J M and Selmcier R 1998 ASME Paper 98-GT-0432
  • [9] Roberts W B, Scrovy G K and Sandercock D M 1985 ASME Paper 85-GT-189
  • [10] Turner M G, Liang T, Beauchamp P P and Jennions I K 1993 ASME Paper 93-GT-38
  • [11] Sauer H, Miiller R and Vogeler K 2000 ASME Paper 2000-GT-473
  • [12] Fritsch G and Mohres W 1997 Proc. 9th Parallel CFD Conf., Manchester, UK
  • [13] Fritsch G, Hoeger M, Blaha C and Bauer D 1997 AIAA Paper 97-2876
  • [14] Hawthorne W R 1955 J. Mech. Appl. Math. 8 (3) 266
  • [15] Came P M and Marsh H 1974 J. Mech. Eng. Science 16 391
  • [16] Langston L S, Nice M L and Hooper R M 1977 ASME J. Eng. for Power 99 21
  • [17] Sieverding C H 1984 ASME Paper 84-GT-78
  • [18] Stark U and Bross S 1996 85th PEP Symposium, Derby, UK, AGARD CP-571
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0010-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.