PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Problemy modelowania rozwoju pożaru w pomieszczeniach

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W artykule opisano główne problemy związane z modelowaniem strefowym i przestrzennym (polowym) rozwoju pożarów w pomieszczeniach. Przeprowadzono analizę możliwości i ograniczeń modeli deterministycznych.
Słowa kluczowe
Czasopismo
Rocznik
Strony
67--91
Opis fizyczny
Bibliogr. 115 poz.
Twórcy
autor
  • Szkoła Główna Służby Pożarniczej, 01-629 Warszawa, ul. Słowackiego 52/54, sgsp@sgsp.edu.pl
Bibliografia
  • [1] H.E. Nelson: Application of Fire Growth Models to Fire Protection Problems,SFPE Hand- book of Fire Protection Engineering, NFPA, Massachusetts 1992.
  • [2] R. Friedman: An International Survey of Computer Models for Fire and Smoke, J.Fire Protection Engineering, (1992), 4, 81-92.
  • [3] A.N. Beard: A Stochastic Model for the Number of Deaths in a Fire, Fire Safety Journal, (1981), 4, 169-184.
  • [4] P.J. DiNenno: The Future of Fire Modeling,SFPE Handbook of Fire Protection Engineering, NFPA, Massachusetts, 1992.
  • [5] A.N. Beard: Limitations of Fire Models, J.Applied Fire Science, 5, (1995-96), 3, 233-243.
  • [6] H.C. Tran, M.L. Janssens: Wall and Comer Fire Test on Selected Wood Products, J.of Fire Sciences, 9, (1991), 2.
  • [7] Y. Hasemi: Diffusion Flame Modeling as a Basis for the Rational Fire Safety Design of Built Environments, Fire Safety Science-Proceedings of the Sixth International Symposium, University of Poitiers, France (1999), 3-22.
  • [8] S. Dillon, J.G. Quintiere, W. Kim: Discussion of a Model and Correlation for the ISO 9705 Room-Comer Test, ibid, 1015-1026.
  • [9] V. Babravskas, S.J. Grayson: Heat Release in Fires.Elsevier Science Publ. Ltd., NY, 1992.
  • [10] M. Pofit-Szczepańska: Teoretyczna i literaturowa analiza modeli rozwoju pożarów w pomieszczeniach, Praca Naukowo-Badawcza ITB, CPBR 6.4, cel 29, temat 3, W-wa 1989.
  • [11] J. Fangrat: Analiza modeli rozwoju pożaru w pomieszczeniu. Prace ITB, (1997), 4, 104.
  • [12] G. Cox: The Challenge of Fire Modelling, Fire Safety Journal, (1994), 23, 123-132.
  • [13] W.D. Walton, E.K. Budnick: Deterministic Computer Fire Models. SFPE Handbook of Fire Protection Engineering, NFPA, Massachusetts 1992.
  • [14] J.G. Quintiere: Fundamentals of Enclosure Fire ’’Zone” Models, J.of Fire Protection Engineering, 1, (1989), 3, 99-119.
  • [15] D.W. Stroup: Using Field Modelling to Simulate Enclosure Fires, SPFE Handbook of Fire Protection Engineering, NFPA, Quincy, 1997.
  • [16] G. Cox: Compartment Fire Modeling.In: G.Cox, editor. Combustion Fundamentals of Fire.London: Academic Press, 1995, 329-404.
  • [17] L.Y. Cooper: A Mathematical Model for Estimating Safe Available Egress Time in Fires, Fire and Materials, (1982), 6.
  • [18] W. Jones: A Multicompartment Model for Spread of Fire, Smoke and Toxic Gases, Fire Safety Journal, (1985), 9, 55-79.
  • [19] J. Wolanin: Model strefowego rozwoju pożaru wewnętrznego, Zeszyty Naukowe SGSP, (1983), 1, 35-42.
  • [20] A. Teodorczyk: Program komputerowy do obliczania dopuszczalnego czasu ewakuacji, BIT KGSP, (1988), 1, 41-53.
  • [21] A. Teodorczyk: MARK-5 program komputerowy do obliczania dynamiki rozwoju pożaru w pomieszczeniach, BIT KGSP, (1988), 2, 68-77.
  • [22] A. Kolbrecki, M. Konecki: Zagrożenie ludzi dymem i toksycznymi produktami spalania w pożarach budynków. Etap Ilia, Illb, IVa. Praca nauk.-bad. 1TB, CPBR 6.4, W-wa 1988-90.
  • [23] W. Piórczyński: Badanie parametrów pożaru z uwzględnieniem własności materiałów palnych i mechanizmu procesu spalania, Rozprawa doktorska, SGSP, W-wa 1997.
  • [24] M. Konecki, N. Tuśnio: The Multi-zone Model for Predicting the Compartment Fire Environment, 17-th International Symposium on Combustion Processes, Poznań, Uniwersity of Technology, 24-27 September 2001, 148-153.
  • [25] ISO 9705: 1993 Fire tests — Full — scale room test for surface products.
  • [26] J. Sauer, E. Smith: Mathematical Model of a Ventilation Controlled Compartment Fire. Journal of Fire Sciences, (1983), 1, 235.
  • [27] B. Karlsson: A Mathematical Model for Calculating Heat Release Rate in the Room Corner Test. „Fire Safety Journal”, (1993), 20, 93.
  • [28] J.G. Quintiere: A Simulation Model for Fire Growth on Materials Subjected to a Room-Comer Test, Fire Safety Journal, (1993), 20, 313-339.
  • [29] J. Fangrat: Rozwój pożaru w pomieszczeniu. Rozprzestrzenianie płomienia przez okładziny ścienne i sufitowe, Zeszyty Naukowe Politechniki Krakowskiej, Seria: Inżynieria Lądowa, (2001), 71.
  • [30] R.D. Peacock, P.A. Reneke, C.L. Fomey, M.M. Kostreva: Issues in Evaluation of Complex Fire Models. Fire Safety Journal, (1998), 30, 103-136.
  • [31] A.N. Beard: Reliability and Computer Models. J.Applied Fire Science, 3, (1993-94), 3, 273-279.
  • [32] W.K. Chow: An Approach for Evaluating Fire Zone Models, Journal of Fire Sciences, January/February, 16, (1998), 25-31.
  • [33] D.Q. Duong: The Accuracy of Computer Fire Models: Some Comparisons with Experimental Data from Australia, Fire safety Journal, (1990), 16, 415-431.
  • [34] V. Novozhilov: Computational Fluid Dynamics Modeling of Compartment Fires, Progress in Energy and Combustion Science, 27 (2001), 611-666.
  • [35] Y. He: On Experimental Data Reduction for Zone Model Validation, Journal of Fire Sciences, March/April,15, (1997), 144-161.
  • [36] Y. He, A. Fernando, M. Luo: Determination of Interface Height from Measured Parameter Profile in Enclosure Fire Experiment, Fire Safety Journal, (1998), 31, 19-38.
  • [37] A.N. Beard: Limitations of Fire Models, Fire Safety Journal, (1992), 18, 375-391.
  • [38] R.D. Peacock, G.P. Forney, P. Reneke, R. Portier, W.W. Jones: (1993) CFAST, the Consolidated Model of Fire Growth and Smoke Transport. NIST Technical Note 1299.
  • [39] G.P. Forney, L.Y. Cooper: The Consolidated Fire Model (CCFM) Computer Application CCFM.VENTS. - Part II: Software Reference Guide, NISTIR 90-4343 (1990).
  • [40] J. Ewer, E.R. Galea, M.K. Patel, S. Taylor, B. Knight, M. Petridis: SMARTFIRE: An Intelligent CFD Based Fire Model, J. Of Fire Prot.Engr, 10, (1999), 1, 13-27.
  • [41] G. Cox: Compartment Fire Modeling.In: G.Cox, editor. Combustion Fundamentals of Fire.London: Academic Press, 1995, 352-404.
  • [42] V. Babravskas, S.J. Grayson: Heat Release in Fires.Elsevier Science Publ. Ltd., NY, 1992, 148.
  • [43] G. Cox, S. Kumar: Field Modeling of Fire in Forced Ventilation Enclosures, Combustion, Science and Technology, 52 (1987), 7-23.
  • [44] K.D. Steckler, J.G. Quintiere, W.J. Rinkinen: Flow Induced by Fire in a Compartment, NBSIR 822520,NBS, Washington, DC, September 1982.
  • [45] M. Luo: One Zone or Two Zones in the Room of Fire Origin During Fires? The Effects of the Air-handling System, Journal of Fire Sciences, May/June, 15, (1997), 240-260.
  • [46] R.A. Waters: Stansted Terminal Building and Early Atrium Studies, J.of Fire Protection Engineering, 1, (1989), 2, 63-76.
  • [47] E. Galea: On the Field Modeling Approach to the Simulation of Enclosure Fires, J. of Fire Protection Engineering, 1, (1989), 1, 11-22.
  • [48] T.J. Ohlemiller, K.M. Villa, E. Braun, K.R. Eberhardt, R.H. Harris Jr, J.R. Lawson, R.G. Gann: Quantifying the Ignition Propensity of Cigarettes, Fire and Materials, 19, (1995), 155-169.
  • [49] J.T. Wanna, Ch.A. Rouse, P.L. Chen, G.E. Henderson, L.C. Greear: Smoldering Potential and Characterization of Used Upholstery Fabrics, September/October, 14, (1996), 379-391.
  • [50] J.L. Torero, A.C. Femandez-Pello: Natural Convection Smoldering of Polyurethane Foam, Upward Propagation, Fire Safety Journal, (1995), 24, 35-52.
  • [51] W.M. Pitts: Application of Thermodynamic and Detailed Chemical Kinetic Modelling to Understanding Combustion Product Generation in Enclosure Fires, Fire Safety Journal, (1994), 23, 271-303.
  • [52] S.L. Thompson, G.E. Apostolakis: A Response Surface Approximation for the Bench-scale Peak Heat Release Rate from Upholstered Furniture Exposed to a Radiant Heat Source, Fire Safety Journal, (1994), 22, 1-24.
  • [53] S.K.S. Hassani, T.J. Shields, G.W. Silcock: Thermal Fracture of Window Glazing: Performance of Glazing in Fire, 4, (1994-95), 4, 249-263.
  • [54] A.A. Joshi, P.J. Pagni: Fire Induced Thermal Fields in Window Glass. I — Theory, Fire Safety Journal, (1994), 22, 25-43.
  • [55] S.K.S. Hassani, T.J. Shields, G.W. Silcock: An Experimental Investigation into the Behaviour of Glazing in Enclosure Fire, J.Applied Fire Science, 4, (1994-95), 4, 303-323.
  • [56] T.J. Shields, G.W.H. Silcock, S.K.S. Hassani: The Behaviour of Single Glazing in an Enclosure Fire, J.Applied Fire Science, 7, (1997-98), 2, 145-163.
  • [57] V. Babrauskas, D. Baroudi, J. Myllymaki, M. Kokkala: The Cone Calorimeter Used for Predictions of the Full-scale Burning Behaviour of Upholstered Furniture. Fire and Materials, 21, (1997), 95-105. 
  • [58] M.A. Azhakesan, T.J. Shields, G.W.H. Silcock: Towards the Translation and Classification of Building Materials Using Combustion Calorimetry, J.Applied Fire Science, 7, (1997-98), 1, 17-28.
  • [59] I. Oleszkiewicz: Fire Exposure to exterior Walls and Flame Spread on Combustible Cladding, Fire Technology, November (1990), 357-375.
  • [60] King-Mon Tu, J.G. Quintiere: Wall Flame Heights with External Radiation, Fire Technology, August (1991), 195-203.
  • [61] J. Zhang, T.J. Shields, G.W.H. Silcock: Fire Hazard Assessment of Polypropylene Wall Linings Subjected to Small Ignition Sources, Journal of Fire Sciences, January/February, 14, (1996), 67-84.
  • [62] J.G. Quintiere: Status of Fire Research and Safety, Fire Safety Science-Proceedings of the Second International Symposium, Hemisphere Publ.Corp. N.Y., 1989.
  • [63] G. Grant, D. Drysdale: Numerical Modelling of Early Flame Spread in Warehouse Fires, Fire Safety Journal, 24,(1995), 247-278.
  • [64] Z. Yan, G. Holmstedt: CFD and Experimental Studies of Room Fire Growth on Wall Lining Materials, Fire Safety Journal, 27, (1996), 201-238.
  • [65] W.K. Chow: Multi-cell Concept for Simulating Fires in Big Enclosures Using a Zone Model, Journal of Fire Sciences, May/June, 14, (1996), 186-198.
  • [66] W.K. Chow: Fire Hazard Assessment in a Big Hall with Multi-cell Zone Modelling Concept, Journal of Fire Sciences, January/February, 15, (1997), 14-28.
  • [67] L.Y. Cooper: Simulating Smoke Movement through Long Vertical Shafts in Zone-type Compartment Fire Models,Fire Safety Journal, 31, (1998), 85-99.
  • [68] A.K. Gupta: Modelling Studies on Axisymmetric Fire Plumes, J.Applied Fire Science, 3, (1993-94), 2, 137-154.
  • [69] A.K. Gupta: Fire Plume — Theories and Their Analysis: J.Applied Fire Science, 2, (1992-93), 4, 269-298.
  • [70] V.O. Shestopal, S.J. Grubits: Computer Program for an Uninhibited Smoke Plume and Associated Computer Software, Fire Technology, Third Quarter, (1993), 246-267.
  • [71] M. Poreh, H.P. Morgan, N.R. Marshall, R. Harrison: Entrainment by Two-dimensional Spill Plumes, Fire Safety Journal, 30, (1998), 1-19.
  • [72] G. Heskestad, T. Hamada: Ceiling Jets of Strong Fire Plumes, Fire Safety Journal, 21, (1993), 69-82.
  • [73] M. Sato, T. Tanaka, T. Wakamatsu: Simple Formula for Ventilation-controlled Fire Temperatures: J.Applied Fire Science, 6, (1996-97), 3, 269-290.
  • [74] C.L. Beyler: Fire Plumes & Ceiling Jets, Fire Safety Journal, 11, (1986), 53-75.
  • [75] N.A. Dembsey, P.J. Pagni, R.B. Williamson: Compartment Fire Near-field Entrainment Measurements, Fire Safety Journal, 24, (1995), 383-419.
  • [76] A.K. Gupta: Transient Analysis of Fire Plumes, J.Applied Fire science, 3, (1993-94), 4, 373-390.
  • [77] M. Law: Measurements of Balcony Smoke Flow, 24, (1995), 189-195.
  • [78] P.H. Thomas, J.P. Morgan, N. Marshall: The Spill Plume in Smoke Control Design, Fire Safety Journal, 30, (1998), 21-46.
  • [79] F. Jiang: Flame Radiation from Polymer Fires, Fire Safety Journal, 30, (1998), 383-395.
  • [80] F.M. Galloway, M.M. Hirschler: Transport and Decay of Hydrogen Chloride: Use of a Model to Predict Hydrogen Chloride Concentrations in Fires Involving a Room-Corridor-Room Arrangement, Fire Safety Journal, 16, (1990), 33-52.
  • [81] L.Y. Cooper: The Generation Rate and Distribution of Products of Combustion in Two-layer Fire Environments: A Model and Applications, Fire Safety Journal, 23, (1994), 245-270.
  • [82] D.T. Gottuk, R.J. Roby, C.L. Beyler: The Role of Temperature on Carbon Monoxide Production in Compartment Fires, 24, (1995), 315-331.
  • [83] R. Friedman: Principles of Fire Protection Chemistry and Physics. NFPA, Inc. Quincy, Massachusetts 1998.
  • [84] F.W. Mowrer: Enclosure Smoke Filling Revisited, 33, (1999), 93-114.
  • [85] D.D. Evans: Ceiling jet flows. SFPE Handbook of Fire Protection Engineering. NFPA, Massachusetts 1992.
  • [86] W.K. Chow: A Short Note on the Simulation of the Atrium Smoke Filling Process Using Fire Zone Models, Journal of Fire Sciences, November/December, 12, (1994), 516-528.
  • [87] W.K. Chow, W.K. Wong: Application of the Zone Model FIRST on the Development of Smoke Layer and Evaluation of Smoke Extraction Design for Atria in Hong Kong, Journal of Fire Sciences, July/August, 11, (1993), 329-347.
  • [88] W.K. Chow: On the Use of Time Constants for Specifying the Smoke Filling Process in Atrium Halls, Fire Safety Journal, 28, (1997), 165-177.
  • [89] P.D. Gandhi: Validation of a Zone Model for Predicting Smoke Obscuration in Rooms, Journal of Fire Sciences, May/June, 12, (1994), 313-325.
  • [90] W.W. Jones, G.P. Forney: Improvement in Predicting Smoke Movement in Compartmen- ted Structures, Fire Safety Journal, 21, (1993), 269-297.
  • [91] Y. He, V. Beck: Smoke Spread Experiment in a Multi-storey Building and Computer Modelling, Fire Safety Journal, 28, (1997), 139-164.
  • [92] B. Hagglund, U. Wickstrom: Smoke Control in Hospitals - A Numerical Study, Fire Safety Journal, 16, (1990), 53-63.
  • [93] L. Kerrison, E.R. Galea, M.K. Patel: A Two-dimensional Numerical Investigation of the Oscillatory Flow Behaviour in Rectangular Fire Compartment with a Single Horizontal Ceiling Vent, Fire Safety Journal, 30, (1998), 357-382.
  • [94] B.S. Kandola: Effects of Atmospheric Wind on Flows Through Natural Convection Roof Vents, Fire Technology, May, (1990), 106-120.
  • [95] M. McCaughey, D.F. Fletcher: Calculations of the Wind-induced Pressure Distribution on a Model Building, Fire Safety Journal, 21, (1993), 189-205.
  • [96] B.J. Mc Caffrey, J.G. Quintiere, M.F. Harkleroad: Estimating Room Temperatures and the Likehood of Flashover Using Fire Test Data a Correlations. Fire Technology, (1981), 17, 2.
  • [97] R.D. Peacock, P.A. Reneke, R.W. Bukowski, V. Babrauskas: Defining Flashover for Fire Hazard Calculations, Fire Safety Journal, 32, (1999), 331-345.
  • [98] D. Drysdale: An Introduction to Fire Dynamics. J. Wiley and Sons Ltd., New York 1990.
  • [99] P.G. Holbom, S.R. Bishop, D. Drysdale, A.N. Beard: Experimental and Theoretical Models of Flashover, Fire Safety Journal, 21, (1993), 257-266.
  • [100] W.K. Chow: Predictability of Flashover by Zone Models, Journal of Fire Sciences, Sep- tember/October, 16, (1998), 335-350.
  • [101] S.R. Bishop, P.G. Holbom, A.N. Beard, D. Drysdale: Nonlinear Dynamics of Flashover in Compartments Fires, 21, (1993), 11-45.
  • [102] T.L. Graham, G.M. Makhviladze, J.P. Roberts: Flashover and the Effects of Compartment Scale, J.Applied Fire Science, 7, (1997-98), 2, 115-128.
  • [103] B.A.L. Ostman, L.D. Tsantaridis: Correlation Between Cone Calorimeter Data and Time to Flashover in the Room Fire Test, Fire and Materials, 18, (1994), 205-209.
  • [104] M. Luo, Y. He, V. Beck: Application of Field Model and Two-zone Model to Flashover Fires in a Full-scale Multi-room Single Level Building, Fire Safety Journal, 29, (1997), 1-25.
  • [105] D. W. Walton, P.H. Thomas: Estimating Temperatures in Compartment Fires, SFPE Handbook of Fire Protection Engineering, NFPA, Massachusetts 1992.
  • [106] F.W. Mowrer: Lag Times Associated with Fire Detection and Suppression, Fire Technology, August, (1990), 244-265.
  • [107] M.A. Sultan, R.E. Halliwell: Optimum Location for Fire Alarms in Apartment Buildings, Fire Technology, November, (1990), 342-356.
  • [108] E. Brozovsky, V. Motevalli, R.L.P. Custer: A First Approximation Method for Smoke — detector Placement Based on Design Fire Size, Critical Velocity and Detector Aerosol Entry Lag Time, Fire Technology, Fourth Quarter, (1995), 337-353.
  • [109] W.K. Chow, S.C. Yip: Sensitivity Studies on Fire Detectors, J.Applied Fire Science, 3, (1993-94), 4, 359-371.
  • [110] L. Y. Cooper: Estimating the Environment and the Response of Sprinkler Links in compartment Fires with Draft Curtains and Fusible Link-actuated Ceiling Vents-Theory, Fire Safety Journal, 16, (1990), 137-163.
  • [111] W.D. Davis, L.Y. Cooper: A Computer Model for Estimating the Response of Sprinkler Links to Compartment Fires with Draft Curtains and Fusible Link-actuated Ceiling Vents, Fire Technology, May, (1991), 113-127.
  • [112] V. Novozhilov, B. Moghtaderi, D.F. Fletcher, J.H. Kent: Numerical Simulation of Enclosed Gas Fire Extinguishment by a Water Spray, J.Applied Fire Science, 5, (1995-96), 2, 135-146.
  • [113] W. K. Chow: Performance of Sprinkler in Atria, Journal of Fire Sciences, November/De- cember, 14, (1996), 466-489.
  • [114] M. B. Kim, Y.J. Jang, M.O. Yoon: Extinction Limit of a Pool Fire with a Water Mist, Fire Safety Journal, 28, (1997), 295-306.
  • [115] W.K. Chow, Y.L. Cheung: Simulation of Sprinkler-Hot Layer Interaction Using a Field Model, Fire and Materials, 18, (1994), 359-379.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0009-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.