PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The phenomena of electrorheological fluid behavior between two barriers under alternative voltage

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrorheological (ER) fluids placed between two barriers have the ability to change some of their physical properties like the apparent viscosity and modulus of elasticity when an external electrical field is applied. Early investigations of the sound transmission loss (STL) under DC voltage showed that a normal stress that develops in ER fluid in response to an electrical field has a significant influence on the magnitude of STL. The tangentional (shear) stress had only a negligible effect on the STL. The aim of this study was to investigate the STL using a two-barrier system with ER fluid placed between them, and subjected to alternative voltage. The STL was investigated for various kinds of ER fluids in the presence of the variable alternative electric field density. The results showed that the STL had decreased with the increasing electric field density.
Słowa kluczowe
Rocznik
Strony
243--258
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Southern Illinois University Carbondale, College of Engineering, Department of Technology, Carbondale, Illinois 62901, USA, szary@engr.siu.edu
Bibliografia
  • [1] SZARY M. L., Experimental study of sound transmission loss in electrorheological fluids under DC voltage, Archives of Acoustics, 27, 3 (2002).
  • [2] SZARY M. L., Sound transmission loss through two barrier systems with electrorheological liquid, Tenth International Congress on Sound and Vibration, 7–10 July Stockholm 2003.
  • [3] SZARY M. L., Experimental study on sound transmission loss in electrorheological liquid under stress developed by DC voltage, International Congress and Exposition on Noise Control Engineering, 19–21 August, Detroit, Michigan 2002.
  • [4] SZARY M. L., NORAS M., Experimental study of sound transmission loss in electrorheological fluids, Proceedings at Conference on Noise Control, 401–408, September, 24-26, 2001, Kielce, Poland.
  • [5] JOLLY M. R., BENDER J. W., MATHERS R. T., Indirect measurements of microstructure development in magnetorheological fluids, Int. J. of Modern Physics B, 13, 14–16, 2036 (1999).
  • [6] NAKANO M., YAMAMOTO H., JOLLY M. R., Dynamic viscoelasticity of a magnetorheological fluid in oscillatory slit flow, Int. J. Modern Physics B, 13, 14–16, 2068 (1999).
  • [7] LY H. V., REITICH F., JOLLY M. R., BANKS H. T., ITO K., Simulations of particle dynamics for magnetorheological fluids, J. Computational Physics, 155, 160–177 (1999).
  • [8] JOLLY M. R., BENDER J. W., CARLSON J. D., Properties and applications of commercial magnetorheological fluids, SPIE 5-th Annual Int. Symposium on Smart Structures and Materials, San Diego, CA, March 15, 1998.
  • [9] CARLSON J. D., CATANZARITE D. N., ST. CLAIR K. A., Commercial magneto-rheological fluid devices, Proceedings 5th Int. Conf. on ER Fluids, MR Suspensions and Associated Technology, W. BULLOUGH [Ed.], World Scientific, Singapore, 20–28, 1996.
  • [10] KOROBKO E. V., SHULMAN Z. P., VORONOVICH G. V., Electrorheological damping in precision systems, Proceedings Of SPIE, 3041, 868–873, Smart Structures and Materials, 3–6 March 1997, San Diego, CA., Bellingham, Wash., SPIE ,1997.
  • [11] PEEL D. J., STANWAY R., BULLOUGH W. A., The ER long-stroke damper: experimental verification of mathematical models, Rheology and Fluid Mechanics of Nonlinear Materials, FED-243/MD-78, 249–259, ASME, 1997.
  • [12] CHOI S., PARK Y., CHEUNG C., Active vibration control of intelligent composite laminate structures incorporating an electro-rheological fluid, Journal of Intelligent Materials Systems and Structures, 7, 411–419 (1996).
  • [13] GAVIN H. P., HANSON R. D., Electrorheological devices with annular electrodes, Proceedings of 10-th Conference ASCE, Boulder, CO., May 21–24, 2, 1231–1234, ASCE, New York 1995.
  • [14] DYKE S. J., SPENCER B. J. Jr., SAIN M. K., CARLSON J. D., Seismic response reduction using magnetorheological dampers, Proceedings of the IFAC World Congress, San Francisco, Ca., June 30-July 5, 1996.
  • [15] BLOCK H., KELLY J. P., Electro-rheology, Journal Of Physics D, Applied Physics, 21, 12, 1661–1667 (1988).
  • [16] JORDAN T. C., SHAW M. T., Electrorheology, IEEE Transactions On Electrical Insulation, 24, 5, 849–878 (1989).
  • [17] KLASS D. L., MARTINEK T.W., Electroviscous fluids II. Electrical properties, Journal of Applied Physics, 38, 1, 75–80 (1967).
  • [18] SHIANG A. H., COULTER J. P., A Comparative study of AC and DC electrorheological material based adaptive structures in small amplitude vibration, Journal of Intelligent Materials Systems And Structures, 7, 455–469 (1996).
  • [19] KUDALLUR S., CONNERS G. H., BUFFINTON K. W., Electrorheological damper for precision applications, Developments in Electrorheological Flows, ASME, FED-235/MD-71, 21–27 (1995).
  • [20] CONRAD H., CHEN Y., Electrical properties and the strength of electrorheological (ER) fluids, Progress in Electrorheology, HAVELKA K. O., FILISKO F. E. [Eds], 55–85, Plenum Press, New York 1995.
  • [21] RADCLIFFE C. J., LLOYD J. R., ANDERSLAND R. M., HARGROVE J. B., State feedback control of electrorheological fluids, presented at ASME International. Congress & Exhibition, November 17–22, Atlanta, GA, 1996.
  • [22] LEITMANN G., Semi-active control for vibration suppression in a system subjected to unknown disturbances, Journal of Circuits, Systems And Computers, 4, 4, 379–393 (1994).
  • [23] RIBAKOV Y., GLUCK J., Active control of mdof structures with supplemental electrorheological fluid dampers, Earthquake Engineering & Structural Dynamics, 28, 143–156 (1999).
  • [24] MAEMORI K., SAJTO T., A new type of hydraulic shock absorber using electrorheological fluid, JSME International Journal, Series C, 41, 1, 156–163 (1998).
  • [25] LEITMANN G., Semiactive control for vibration attenuation, Journal of Intelligent Materials Systems and Structures, 5, 841–846 (1994).
  • [26] YALCINTAS M., COULTER J. P., Electrorheological material based non-homogeneous adaptive beams, Smart Materials & Structures, 7, 128–143 (1998).
  • [27] KLINGENBERG D. J., DIERKING D., ZUKOSKI C. F., Stress-transfer mechanisms in electrorheological suspensions, Journal of Chemical Society Faraday Transactions, 87, 3, 425–430 (1991).
  • [28] KOHL J. G., TICHY J. A., Expressions for coefficients of electrorheological fluid dampers, Lubrication Science, 10, 2, 135–143 (1998).
  • [29] PARTHASARATHY M., KLINGENBERG D. J., Large amplitude oscillatory shear of ER suspensions, Journal of Non-Newtonian Fluid Mechanics, 81, 83–104 (1999).
  • [30] Laboratory Measurement of the Airborne Sound Barrier Performance of Automotive Materials and Assemblies, SAE J1400”, May 1990.
  • [31] NORAS M., Sound transmission loss control using electrorheological fluids, Ph.D. thesis, Southern Illinois University, December 1999.
  • [32] BERANEK L. L., VER I. L., Noise and Vibration Control Engineering: Principles and Applications, Wiley, New York 1992.
  • [33] VersaFloTM Fluids Product Information: LordrCorporation, Form# P101-ER201A.
  • [34] MONKMAN G. J., The electrorheological effect under compressive stress, Journal of Physics D: Applied Physics, 28, 588–593 (1995).
  • [35] DAVIS L. C., GINDER J. M., Electrostatic forces in electrorheological fluids, Progress in Electrorheology, HAVELKA K. O., FILISKO F. E., Plenum Press 107–114, New York 1995.
  • [36] CONRAD H., SPRECHER A. F., Characteristics and mechanisms of electrorheological fluids, Journal of Statistical Physics, 64, 1073–1091 (1991).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0007-0143
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.