PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Piezoelectric interfacial waves in two-medium structures

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The theory is given and a numerical analysis is presented of propagation of piezoelectric interfacial waves along a perfectly conducting plane that separates two piezoelectric half-spaces of different crystallographic orientations or two half-spaces of different piezoelectrics. In the case of slightly different orientations (half a degree in each Euler angle), it is found that the coupling coefficient is in general less than in the case of two half-spaces of the same orientation, but still large. For example, it is 3.40% for lithium niobate (instead of 3.50%), 0.85% for dilithium tetraborate (instead of 0.90%), 0.15% for langasite (instead of 0.20%). In the case of two half-spaces of arbitrary different crystallographic orientations (lithium niobate and lithium niobate), and two half-spaces of different piezoelectrics (dilithium tetraborate and lithium niobate), it is found that the coupling coefficient may be quite large for some crystal cuts (correspondingly 2.25% and 1.45%), although for the majority of crystal cuts the waves do not exist.
Słowa kluczowe
Rocznik
Strony
521--532
Opis fizyczny
Bibliogr., 12 poz., rys., tab., wykr.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Fundamental Technological Research, Warszawa, Poland
Bibliografia
  • [1] K.A. Ingebrigtsen, Surface waves in piezoelectrics, J. Appl. Phys., 40, 2681-2686 (1969).
  • [2] K. Blotekjaer, K.A. Ingebrigtsen and H. Skeie, A method for analyzing waves in structures consisting of metal strips on dispersive media, IEEE Tians. Electron Devices, ED-20, 1133-1138 (1973).
  • [3] E. Danicki, New interfacial shear waves in piezoelectrics, Appl. Phys. Let t., 64, 969-970 (1994).
  • [4] E. Danicki, Piezoelectric interfacial waves in LiNbO a”, Appl. Phys. Lett., 66, 3439-40 (1995).
  • [5] E.L. Adler, SA W and pseudo-SAW properties using matrix methods, IEEE Trans. Ultrason. Ferroel. Freq. Control, 41, 699-705 (1994).
  • [6] B.T. Smith, J.M. Boyle, B. S. Garbów, Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix eigensystem routines - EISPACK Guide, Lecture Notes in Computer Science, 6, 149-258 (1974).
  • [7] J.G. Gualtieri, J.K. Kosiński and A. Ballato, Piezoelectric materials for SAW applications, IEEE Trans. Ultrason. Ferroel. Freq. Control, 41, 53-59 (1994).
  • [8] B.A. Auld, Acoustic fields and waves in solids, Wiley, New York 1973, Vol. 1, p. 357.
  • [9] E. Danicki and W. Laprus, Piezoelectric interfacial waves in langasite and dilithium tetraborate, [in:] 1995 IEEE Ultrasonics Symposium Proceedings, M. Levy, S.C. Schneider and B.R. McAvoy [Eds.], IEEE, New York 1995, pp. 1011-1014.
  • [10] E. Danicki and W. Laprus, Piezoelectric interfacial waves in langasite and dilithium tetraborate, Archives of Acoustics, 21, 99-107 (1996).
  • [11] W. LAPRUS an d E. DANICKI, Piezoelectric interfacial waves in lithium niobate and other crystals, J. Appl. Phys., 81, 855-861 (1997).
  • [12] www.ippt.gov.pl/~wlaprus.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0007-0133
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.