Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Circular transducers with axially-symmetric vibrational profiles were considered. Vibrational patterns of transducer structures were calculated using the Finite Element Method. Analytical formulas for the impulse response function h(X,t) for circular transducers and vibration velocity profiles, approximated by linear and quadratic polynomials, on the finite element (annulus) were established. These formulas enable accurate calculations of acoustic field distributions in near and far-field, respectively. Calculated profiles of an acoustic field were compared with the experimental data.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
291--306
Opis fizyczny
Bibliogr. 43 poz., rys. wykr.
Twórcy
autor
- Section of Acoustoelectronics Institute of Fundamental Technological Research Polish Academy of Sciences,Warsaw
Bibliografia
- 1] A.J. Rudgers, Application of a Neumann-series method to two problems in acoustic radiation theory that are formulated in terms of Green’s functions, JASA, 79, 5, 1211-1222 (1986).
- [2] A.F . Seybert, T.W . Wu, Modified Helmholtz integral equation for bodies sitting on an infinite plane, JASA, 85, 1, 19-23 (1989).
- [3] R. Lerch, Finite element analysis of piezoelectric transducers, IEEE Ultrasonic Symposium Proc., pp. 643-653 (1988).
- [4] R. Lerch, Finite element modelling of acoustic radiation from piezoelectric phased array antennas, IEEE Ultrasonic Symposium Proc., pp. 763-767 (1990).
- [5] J. Hossack, G. Hayward, Design and evaluation of one and two dimensional composite transducer arrays using finite element method, Ultrasonic Internation al 1989 Proceedings, pp. 442-447 (1989).
- [6] K.W. Commander, R.J. McDonald, Finite element solution of the inverse problem in bubble swarm acoustics, JASA, 89, 2, 592-597 (1991).
- [7] Hirofumi Okada, Minoru Kurosawa, Sadayuki Ueha, Michiyuki Masuda, New airborne ultrasonic transducer with high output sound pressure level, Japanese Journal of Applied Physics, 33, Pa rt 1, 5B, 3040-3044 (1994).
- [8] R.D. Ciskowski, C.A . Brebbia, Boundary Methods in Acoustics, Elsevier, London 1991.
- [9] R. Lerch, H. Landers, W. Friedrich, R. Hebel, A. Hos, H. Kaarmann, Modelling of acoustic antennas with a combined finite-element-boundary-element-method, IEEE 1992, Ultrasonic Sym¬posium Proc., pp. 581-584 (1992).
- [10] A.D . Pierce, Variational formulations in acoustic radiation and scattering, [in:] Physical Acous¬tics Vol. XXII, Thuston and Pierce [Eds.], Academic Press, Boston 1993, pp. 195-371.
- [11] P.R. Stepanishen, Transient radiations from pistons in an infinite planar baffle, JASA, 49, 5 (Pa rt 2), 1629-1638 (1971).
- [12] J.C. Lookwood, J.G . Willete, High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston, JASA, 53, 3, 735-741 (1973).
- [13] A. Penttinen, M. Luukkala, The impulse response and pressure nearfield of a curved ultrasonic radiator, J. Phys. D: Appl. Phys., 9, 10, 1547-1557 (1976).
- [14] Harris, Review of transient field theory for a baffled planar piston, JASA, 70, 1, 10-20 (1981).
- [15] J. Naze Tjotta, S. Tjotta, Nearfield and farfield of pulsed acoustic radiators, JASA, 7, 4, 824-834 (1982).
- [16] S. Krenk, Geometrical aspects of acoustic radiation from a shallow spherical cap, JASA, 74, 5, 1617-1622 (1983).
- [17] W.A. Verhoef, M.J.T.M. Cloostermans, J.M. Thijssen, The impulse response of a focused source with an arbitrary axisymmetric surface velocity distribution, JASA, 75, 6, 1716-1721 (1984).
- [18] H. Lasota, R. Salomon and B. Delannoy, Acoustic diffraction analysis by the impulse response method: A line impulse response approach, JASA, 76, 1, 280-290 (1984).
- [19] H. Lasota, Diffraction of acoustic plane wave: A time domain analysis, JASA, 78, 3, 1086-1092 (1985).
- [20] L.Gomez Ularte, J.L San Emeterio Prieto, On The Impulse Response Of Rectangular Baffled Pistons, Ultrasonic International, Conference Proceedings, pp. 566-571, 1989.
- [21] F.M .J. Linsen, A.F .G. Hoeks, Transducer characterisation from pressure amplitude distribution measurements using a Kalman filter as parameter estimation algorithm, Ultrasonic Imaging, 12, 309-323 (1990).
- [22] B. Piwakowski, K. Sbai, B. Delan noy, Computer-aided computing of acoustic field radiated from arbitrarily structured transducer arrays, IEEE Ultrasonic Symposium Proceedings, pp. 983-986, 1994.
- [23] J. Zemanek, Beam behavior within the nearfield of a vibrating piston, JA SA , 49, 1 (Part 2), 18 1-19 1 (19 71).
- [24] E.G. William s, J.D . Maynard, Numerical evaluation of the Rayleigh integral for planar radia¬tors, JA SA , 72, 6, 2020-2030 (1982).
- [25] K.P . Soldatos, Review of three dimensional dynamic analyses of circular cylinders and cylindrical shells, Applied Mechanics Review, 47, 10, 501-516 (1994).
- [26] J.R . Hutchinson, Vibrations of solid cylinders, Journal of Applied Mechanics, 47, 901-907 (1980).
- [27] O.G. Gustafsson , T .R . Kane, Axially symmetric extensional vibrations of a circular disk with a concentric hole, Journal of Applied Mechanics, 26, 541-545 (1959).
- [28] J.R . Hutchinson, Axisymmetric vibrations of a free finite-length rod, JA SA , 51, 1 (Part 2), 233-240 (1972).
- [29] A. Iula , N. Lamberti, M. Pappalardo, A matrix model of the thin piezo-electric ring, IEEE Ultrasonic Symposium Proc., pp. 921-924, 1994.
- [30] J. Zemanek , An experimental and theoretical investigation of elastic wave propagation in a cylinder, JA SA , 51, 1 (Part 2), 265-283 (1972).
- [31] M. Brissaud, Three-dimensional modelling for ring and tube piezoceramics, Ultrasonics International Conference Proceedings, pp. 647-652, 1989.
- [32] E.P. Eernisse, Varational method for electroelastic vibration analysis, IEEE Trans, on Sonics & Ultrasonics, SU-14, 153-160 (1967).
- [33] R. Holland , E.P . EerNisse, Variational evaluation of admittances of multielectroded three-dimensional piezoelectric structures, IEEE Trans, on Sonics &: Ultrasonics, SU-15, 2, 119-132 (1968).
- [34] G.W . McMahon, Finite difference analysis of the vibrations of solid cylinders, JA SA , 48, 1 (Part 2), pp. 308-312 (1969).
- [35] H.A . Kunkel, S. Locke, B. Pinkerton, Finite element analysis of vibrational modes in piezoelectric ceramic disk, IEEE Trans, on UFF C, 37, 4, 316-328 (1990).
- [36] R. Lerch, Simulation of piezoelectric devices by two and three-dimensional finite elements, IEE E, Ultrasonic Symposium Proc., pp. 233-247 (1990).
- [37] P. Challan de, Optimizing ultrasonic transducers based on piezoelectric composites using a finite element method, IEEE Trans, on UFF C, 37, 3, pp. 135-140 (1990).
- [38] R.W. Clough, F. Asce, Y. Rashid, Finite element analysis of axisymmetric solids, Journal of the Engineering Mechanics Division, pp. 71-85 (1965).
- [39] Jun Lan, M.J. Simoneau, R.K . Jeffreys, S.G. Boucher, A complete finite element model, IEEE, Ultrasonic Symposium Proceedings, pp. 999-1003 (1994).
- [40] J.T. Stewar t, Finite element modeling of resonant microelectromechanical structures for sensing applications, IEEE , Ultrasonic Symposium Proc., pp. 643-646 (1994).
- [41] P. Kiełczyński, W. Pajewski, M. Szalewski, Finite Element Method (FEM ) and Impulse Response Method (IRM) analysis of circular and rectangular transducers, IEEE Ultrasonic Symposium in Seattle (USA), 1995.
- [42] W. Pajewski, M. Szalewski, Piezoelektryczne przetworniki ultradźwiękowe promieniujące do powietrza, Prace IP PT, 4/1992.
- [43] W. Pajewski, P. Kiełczyński, M. Szalewski, Radiations of piezoelectric rings into the air through cylindrical waveguides, Archives of Acoustics, 20, 4, 361-372 (1995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0007-0116