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The propagation velocities of four ultrasonic waves in a steel plate are measured in
twelve equally spaced observation points lying in a rolling plane on a straight line perpen-
dicular to the rolling direction. The plate material was rolled plastically and uniaxially in
the situation where the edges parallel to the rolling direction were free. The plate is con-
sidered to be a bulk sample with orthorhombic symmetry of bulk mechanical properties
made of cubic crystals of the highest symmetry. The local probability density function of
the crystallite orientation and the local e�ective sti�ness moduli of a single grain (crystal-
lite) are found from four ultrasonic velocities and the rules of orthorhombic symmetry and
Jaynes' principle of maximum Shannon entropy. These results, which have been obtained
for twelve mesodomains centered at each of the twelve observation points, show the e�ect
of the distance between an observation point and a free plate edge on the local e�ective
sti�ness moduli and on the local probability density function of the crystallite orientation.

1. Introduction

In an isotropic polycrystalline material the ultrasonic velocities are independent of
the direction of the ultrasonics' propagation through a macroscopic sample of the mate-
rial. Most polycrystalline materials (e.g. metals) were acted on by forming forces, which
caused plastic deformation, subjected the body to a state of stress or deformation and
left the crystallites (basic units, grains) in certain preferred orientations. Consequently,
the forces of the forming process caused anisotropy of the overall (e�ective) mechanical
(amongst them acoustical) properties of the material. The non-random distribution of
the crystallite orientation, which is caused by plastic deformation, is called the texture.
Therefore, most polycrystalline materials exhibit texture resulting from their forming
processes. The acoustical anisotropy is revealed by the variations in speeds at which
ultrasonic waves propagate through the sample, the variations being dependent on the
directions of the wave propagation and polarization. In numerous situations, the texture
considerably contributes to the mechanical and acoustical anisotropy of the material.

Among the problems of forming the texture in metals during plastic deformation,
there are mainly two �elds of interest for both a fundamental and an applied researcher.
The �rst is directed to the e�ect of roll forces, their geometry as well as another rolling
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parameters and conditions on the texture. The second is concerned with the in�uence of
the texture on the mechanical properties of rolled metal (e.g. steel). For example, for the
application of structural steels in various �elds of engineering, high strength, su�cient
ductility and a good weldability as well as formability are often highly desired. Therefore,
the changes in these steel properties during a plastic forming process (e.g. rolling) may
be more exactly predicted as our knowledge of the problems belonging to these two �elds
becomes better.

In the paper, the considerations are con�ned to ultrasonic plane and linearly polarized
waves which propagate in macroscopic pollycrystalline aggregates with orthorhombic
symmetry of the bulk (e�ective) elastic properties, the aggregates being composed of a
large number of cubic crystallites of the highest symmetry. The macroscopic orthorhombic
symmetry is of considerable practical interest since the rolling process in one direction
only of a polycrystalline aggregate with virgin (before deformation) isotropic symmetry
always results in the transformation of the isotropic symmetry (or another one) into the
othorhombic symmetry.

In the paper, there is presented a nondestructive ultrasonic method of the estimation
of some local material parameters and the local texture of a steel plate which was rolled
uniaxially in the situation where the edges parallel to the rolling direction were free.
Thus in this paper, only such orientation statistics of the crystallites is considered which
contributes to the orthorhombic symmetry of the dynamic properties of a bulk specimen
of a polycrystalline aggregate made of cubic crystals of the highest symmetry. Using the
approach proposed by Lewandowski in [2], we do not neglect the e�ect of other causes
on the e�ective mechanical and ultrasonic propagation properties of the polycrystalline
aggregate as well as on the macroscopic symmetry of these properties, since this approach
is based on taking into account the fact that the values of measured velocities of the
ultrasonic waves are determined not only by the structure and physical properties of the
acoustical medium under examination but also by all these physical phenomena occurring
in the medium which in�uence on the propagation. In other words, the measured velocities
of ultrasonics, which are the basis for all calculations presented in the subsequent text,
contain information on the structure and properties of the material, among other on the
values of the dynamic single-crystal material parameters in�uenced on by the defects and
imperfections of crystal microstructure, residual stress, scattering and the phenomena of
mechanical energy dissipation.

2. Formulation of the problem

Although numerous ultrasonic investigations have been carried out in connection
with the rolling process, quantitative information on the complete distributions both of
some local mechanical properties of the plate material and the local texture in a plate
undergoing rolling seems to be little. Among others here arises the question how strongly
are the local mechanical properties and texture in�uenced on by the distance x between
an observation point determined by the position vector r and one of the two plate edges
parallel to the rolling direction, in the situation where these edges are free.
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It should perhaps be emphasized that in this paper the term local concerns the use of
three measuring scales, the smallest of which refers to a structural grain or crystallite of
the material. For simpli�cation of the analysis, an assumption is used as the �rst approx-
imation of the internal contribution to the material response on an external (ultrasonic
transducer) loading. In accordance with this assumption, the constitutive internal rela-
tions of a microelement (grain or crystallite) are describable by continuum laws, whilst
the stress and displacement �elds are described either in terms of random variables or
stochastic processes depending on the loading and the material under investigation. All
parameters concerned with the smallest region are pre�xed by micro. Next an intermedi-
ary scale is introduced referred to as a mesodomain that contains a statistical ensemble
of crystallites. A mesodomain is interpreted to be much smaller than the macroscopic
domain of the entire material body (macroscopic sample), but is much larger than the
domain of a microelement as containing a statistical ensemble of crystallites. In the sub-
sequent text, the term local texture (properties) does not mean the texture (properties)
in a point in the plate under study, which is determined by a position vector r, but means
the texture (properties) of the plate material �lling a mesodomain geometrically centered
at the point determined by the position vector r. This point is called in the subsequent
text the observation point.

In the paper, we are interested in some mechanical properties and the local texture of
a steel plate of dimensions of 0.38m× 0.26m× 0.02 m which was rolled uniaxially in the
situation where the edges parallel to the rolling direction were free. We are interested �rst
in showing that it is possible to estimate from ultrasonic measurements the distribution of
the local propagation (mechanical) properties and texture of the steel plate. Secondly, we
are going to reveal the in�uence of the distance x between an observation point and the
reference free edge on the the local values of e�ective material parameters and the local
texture. For this reason, we are interested in deducing from the ultrasonics measurements
the local values of e�ective material parameters of a crystallite as well as the distributions
of the local texture in the plate in twelve equally spaced points (0.02m apart) lying in
rolling plane on a straight line perpendicular to the rolling direction. In this way, the
measurements of the propagation velocities, Vij , where i, j = 1, 2, 3, of ultrasonic plane
waves propagating and polarized in the directions of the Cartesian reference axes 0xi and
0xj , respectively, are the only experimental tools for texture investigations discussed in
this paper. The Cartesian coordinate system 0x1x2x3 with the axes 0x1, 0x2 and 0x3 is
de�ned below.

Among the reasonable choices of the reference system for analysing this problem is
the Cartesian coordinate system 0x1x2x3 with the axes 0x1, 0x2 and 0x3 chosen as the
rolling R, transverse (perpendicular to R in the rolling plane) T and normal (to the rolling
plane) N directions, respectively. Let the abbreviations e1, e2 and e3 denote the unit
vectors along the directions of the axes 0x1, 0x2 and 0x3, respectively. The Cartesian
coordinate system 0x1x2x3 will be called the macroscopic reference system. To de�ne
the texture precisely, we also make use of a local Cartesian coordinate system 0X1X2X3

called the microscopic reference system. This reference system is de�ned, similarly as
in Refs. [1, 2], for each single cubic crystallite. Its reference 0X1 axes, 0X2 and 0X3

are chosen in the crystallographic directions [100], [010] and [001], respectively. Let the
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abbreviations E1, E2 and E3 denote the unit vectors along the directions of the axes
0X1, 0X2 and 0X3, respectively. In the subsequent considerations, the orientation of
a crystallite in the polycrystalline sample is described by giving the values of three
Eulerian angles θ, ϕ and φ where θ, ϕ and φ denote the Eulerian angles de�ned in this
paper in the same way as in Ref. [3], i.e. θ is the angle of nutation, ϕ is the angle of
precession and φ is the angle of proper rotation. In the paper, the texture is described
by using the probability density function of the crystallite orientation, p(ξ, ϕ, φ), de�ned
in such a way that p(ξ, ϕ, φ) dξ dϕ dφ expresses the probability of a crystallite having an
orientation described by the Euler angles θ = cos−1 ξ, ϕ and φ, lying in the intervals
〈cos−1 ξ, cos−1(ξ + dξ)〉, 〈ϕ, ϕ + dϕ〉 and 〈φ, φ + dφ〉, respectively.

Using the approach proposed by Lewandowski [2], we utilize the fact that the propa-
gation properties of the polycrystal under examination, which are revealed by the results
of ultrasonic measurements, contain information on the structure and properties of the
components of the medium as well as on the phenomena occurring in the polycrystal and
in�uencing on the propagation (e.g., scattering). It means that the dynamic mechanical
and propagation properties (the values of the components of the e�ective sti�ness ten-
sor) of a single grain in the approach proposed in Ref. [2] and applied in this paper are
taken to be �as they are" by letting the experimental data (ultrasonics wave velocities
and the rules of orthorhombic symmetry) to determine the single-grain e�ective elastic
properties and texture of the bulk sample under consideration. The respective numerical
calculations are performed by using the equations which are derived and listed in Ref.
[2, Eqs. (5), (7), (9), (15), (21) - (23)]. Starting from these equations, we �nd the function
p(ξ, ϕ, φ) and obtain values of the components of the so-called e�ective sti�ness tensor,
c
(eff)
ij , (i, j = 1, 2, 3), of a single grain of the polycrystalline aggregate under examination.
The reasoning leading us to such results may be presented shortly as follows:

We start from the hypothesis that the propagation properties of the bulk specimen
under examination are de�ned by the macroscopic tensor of the e�ective elastic sti�ness,
C

(eff)
i,j , of the sample (or, equivalently, elastic compliance tensor) and the e�ective density,

ρ, the last being assumed in this paper to be equal to the density averaged over the
volume of a single bulk sample. Let us remind that the symmetry of the e�ective elastic
sti�ness tensor of the bulk sample of the polycrystalline aggregate under examination,
which is called in the subsequent text the macroscopic symmetry of the bulk sample, is
orthorhombic in the situation where the material was plastically rolled in one direction.
More strictly speaking, the term e�ective properties of the bulk sample is used to describe
the physical properties of the so-called equivalent homogeneous medium [4] that exhibits
the same macroscopic symmetry as the bulk sample under study, and the displacement
response of the equivalent medium to the transducer loading is the same as the averaged
displacement response of the polycrystalline material to the same loading, the averaging
being carried out over a statistical ensemble of bulk samples, i.e. over all crystallites
through the function p(ξ, ϕ, φ). Similar to the e�ective density, the e�ective elastic moduli
are also independent of the position vector (space coordinates), but they are dependent
on the frequency of the loading transducer. In contrast, the average displacement �eld
resulting from the dynamic load is dependent on the position vector, r, time, t, and



ESTIMATION OF LOCAL MATERIAL AND STRUCTURE PARAMETERS 335

load (angular) frequency, ω, and, consequently, is called the e�ective displacement �eld
or e�ective wave � especially, if is harmonically dependent on the position vector and
time.

Knowing the e�ective properties of the sample under examination, we are able to
estimate the dynamic response of the sample being acted on by ultrasonic transducer.
In the case, when the response is of the form of ultrasonic plane waves propagating
and polarized in the directions of the macroscopic Cartesian reference axes 0xi and
0xj (i, j = 1, 2, 3), respectively, the propagation velocities, Vij , of these waves can be
calculated from the Christo�el equation [5]

det
(
Γ ik − ρV 2

ghδik

)
= 0, g, h, i, k = 1, 2, 3 (1)

in which
Γ ik = C

(eff)
ijkl ηjηl (2)

is the so-called �Christo�el-Kelvin sti�ness", ρ stands for the mass density, and δik is the
Kronecker delta. In Eq. (2) the de�nition of Γ ik, the components C

(eff)
ijkl (e�ective sample

sti�ness moduli) of the sti�ness tensor of the macroscopic sample are related to C
(eff)
ij by

using the reduced subscript notation. The abbreviations ηj and ηl denote the components
of the unit vector in the direction of the wave propagation.

On the other hand, by using a suitable averaging procedure the e�ective sample sti�-
ness moduli, C

(eff)
ij , can be calculated from the values of the dynamic sti�ness moduli c11,

c12, c44 of a single cubic grain (crystal), its density ρ, and from the probability density
function of the crystallite orientation, p(ξ, ϕ, φ). There are numerous procedures to ap-
proximating the e�ective elastic constants, proposed by such authors as Voigt [6], Reus
[7] and Hill [8]. The solutions of the Christo�el equations (1) for an orthorhombically
textured solid, which are obtained with applying the Voigt approximation (averaging
procedure) to the calculation of the e�ective sample sti�ness moduli, C

(eff)
ij , are listed in

Ref. [9] as formulae (10) � (21). It should perhaps be emphasized that the values of the
moduli c11, c12, c44 of a single cubic grain (crystal) were considered in Refs. [9, 1] for a
deformed and textured steel as being equal to the values of c11, c12, c44 and ρ, which had
been determined for a single-crystal of pure BCC Fe with using a statical method. It is
not to be expected that such an approximation, which can be called the long-wavelength
and ideal Fe crystal approximation, would be always acceptable for rolled steel, which is
a polycrystalline aggregate of Fe with impurities and structure defects. For this reason,
herein is used a modi�ed approach proposed by Lewandowski in Ref. [2], in which the
values of c11, c12, c44 are replaced by the so-called e�ective dynamic sti�ness moduli of
a single grain in deformed steel, c

(eff)
11 , c

(eff)
12 and c

(eff)
44 , the last being determined also

from measured values of ultrasonic velocities. Using the Sayers' solutions [9, formulae
(10) � (21)], Lewandowski [2] arrived at the following equations, after a little algebra
and manipulation

〈r1(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

11

)
, c11 =

c
(eff)
11

ρ
,

(3)
c =

1
ρ

(
c
(eff)
11 − c

(eff)
12 − 2c

(eff)
44

)
.= c11 − c12 − 2c44 ;
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〈r2(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

22

)
, (4)

〈r3(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

33

)
, (5)

〈r4(ξ, ϕ, φ)〉 =
1
c

(
V 2

23 − c44

)
, c44 =

c
(eff)
44

ρ
, (6)

〈r5(ξ, ϕ, φ)〉 =
1
c

(
V 2

13 − c44

)
, (7)

〈r6(ξ, ϕ, φ)〉 =
1
c

(
V 2

12 − c44

)
, (8)

where
Vij = Vji ,

V 2
i1 + V 2

i2 + V 3
i3 = V 2

1j + V 2
2j + V 2

3j = ca , (9)

ca =
1
ρ

(
c
(eff)
11 + 2c

(eff)
44

)
,

r4 = r3 + r2 − r1 , r5 = 2(r1 − r2) + r4 , r6 = 2r1 − r5 , (10)

r1 = l21l
2
2 + l21l

2
3 + l22l

2
3 ,

r2 = m2
1m

2
2 + m2

1m
2
3 + m2

2m
2
3 , (11)

r3 = n2
1n

2
2 + n2

1n
2
3 + n2

2n
2
3 ,

li = Eie1 , mi = Eie2 , ni = Eie3. (12)

The abbreviations 〈rq〉, q = 1, 2, ..., 6, in Eqs. (3) � (8) denote averaging the above de�ned
functions of a single-crystal orientation, rq(θ, ϕ, φ), over all the crystallites in the sample,
i.e. 〈rq(θ, ϕ, φ)〉 is rq(θ, ϕ, φ) weighted by p(θ, ϕ, φ):

〈rq(ξ, ϕ, φ)〉 =

2π∫

0

2π∫

0

1∫

−1

rq(ξ, ϕ, φ)p(ξ, ϕ, φ) dξ dϕ dφ. (13)

Let us remind that p(ξ, ϕ, φ)dξ dϕ dφ stands for the probability of a crystallite having an
orientation described by the Euler angles θ (= cos−1 ξ), ϕ and φ, lying in the intervals
〈cos−1 ξ, cos−1(ξ +dξ)〉, 〈ϕ,ϕ+dϕ〉 and 〈φ, φ+dφ〉, respectively. The probability density
function p(ξ, ϕ, φ) ful�ls the normalization condition

〈p(ξ, ϕ, φ)〉 =

2π∫

0

2π∫

0

1∫

−1

p(ξ, ϕ, φ) dξ dϕ dφ = 1. (14)

It should perhaps be emphasized that each left-hand side of the six equations (3) � (8)
is of the form of an expectation value of one of known six functions, rq(ξ, ϕ, φ), of a single-
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crystal orientation. As it follows from Eqs. (9) � (12), only three functions rq(ξ, ϕ, φ) are
linearly independent of each other. Each right-hand side of the six equations (3) � (8) is
of the form of a known function of an ultrasonic velocity, Vij , the e�ective single-crystal
sti�ness moduli c

(eff)
11 , c

(eff)
12 , c

(eff)
44 , and density ρ. In Ref. [1], where the polycrystalline

aggregate was approximated by the respective ideal polycrystalline solid, the values of
all the quantities appearing on the right-hand side of each of the six equations (5) � (10)
are regarded to be known and are to be equal to the respective single-crystal sti�ness
moduli c11, c12, c44 and density ρ.

As it was shown in Ref. [1], in the situation, where the left-hand sides of Eqs. (3) �
(8) are the expectation values of rq(ξ, ϕ, φ) weighted with p(ξ, ϕ, φ) and the right-hand
sides of these equations are functions of the observables Vij , and when c11, c12, c44

are known, the information theory approach can be used successfully for determining
the probability density function p(ξ, ϕ, φ) in the long-wavelength and ideal polycrystal
approximation. It can be done for uniaxially rolled material from three of Eqs. (5) �
(10) with such three functions rq(ξ, ϕ, φ), which are linearly independent on each other.
This requirement is ful�lled by three equations under testing, if each of the numbers 1,
2, and 3 appears as subscripts i or/and j at no more than two velocities involved in
the equations [1]. Such a system of three equations was called in the Ref. [2] the basic
system of three equations. From results of Refs. [1, 2] it follows that the measurements of
three propagation velocities involved in the basic system of three equations, e.g. V11, V33

and V13, are su�cient for the probability function p(ξ, ϕ, φ) to be fully determined for
aggregates with orthorhombic macroscopic symmetry and when c11, c12 c44 are known.
Then the probability density function p(ξ, ϕ, φ) implied by the Jaynes' [10] principle
of maximum Shannon entropy is given in terms used in [2, Appendix] by the following
expression

p(ξ, ϕ, φ) =
1
Z

exp [−L1r1(ξ, ϕ, φ)− L3r3(ξ, ϕ, φ)− L5r5(ξ, ϕ, φ)] , (15)

where the partition function Z and the Lagrangian multipliers L1, L3 and L5 may be
determined from Eqs. (3), (5), (7) and the normalization condition (14).

The method proposed in Ref. [1] has been improved in Ref. [2] by avoiding the limiting
assumptions concerning the length of ultrasonic waves (long-wavelength approximation)
and the absence of imperfections (e.g. voids, imperfect adhesion of neighbouring grains,
residual stress, impurities) of the material of the polycrystalline aggregate and its mi-
crostructure. In Ref. [2], a theoretical approach has been proposed utilizing the same
as in Ref. [2] information theory method to determine the probability density function
p(ξ, ϕ, φ) and the material parameters c11

.= c
(eff)
11 /ρ, c12

.= c
(eff)
12 /ρ, c44

.= c
(eff)
44 /ρ from

the rules of macroscopic orthorhombic symmetry and the results of the measurements
of four respectively chosen ultrasonic velocities, Vij , three of them being involved in the
basic system of equations.

In the remainder of this paper, the procedure proposed in Ref. [2] will be utilized
for solving the problem of determination the function p(ξ, ϕ, φ) and the single-crystal
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material parameters c11, c12, and c44 in the case when the same three ultrasonic ve-
locities V e11, V e33, V e13 and additionally one of the velocities V e22, V e33 and V e12,
namely V e23, are known. Similarly as in Ref. [2], henceforth, a value of Vij , which
will be regarded to be obtained experimentally, will be denoted V eij . The ultrasonic
measurements were performed in the twelve observation points on the real material un-
der examination. Hence, the values of measured velocities, V eij , contain information on
the structure and properties of the material as well as on the phenomena in�uencing
on the propagation and occurring in the polycrystal under examination. Therefore, it
may be expected that the values of V eij together with the symmetry rules allow us to
determine the function p(ξ, ϕ, φ) as well as the material parameters c11, c12, and c44.
In this case, assuming that the probability density function p(ξ, ϕ, φ) is implied by the
Jaynes' [10] principle of maximum Shannon entropy, p(ξ, ϕ, φ) is also of the form given
by Eq. (15). Contrary to Ref. [1], now the partition function Z and the Lagrangian multi-
pliers L1, L3 and L5 are to be determined together with the material parameters c11, c12

and c44 from the seven Eqs. (3) � (8), (14), after setting the results of the measurements
of the ultrasonic velocities V e11, V e33, V e13, and V e23. Therefore, from the four veloci-
ties V eij , the maximum-entropy estimate of the probability density function, p(ξ, ϕ, φ),
will be determined together with the material parameters c11, c12 and c44, after en-
larging the approach presented in paper [1] by including a self-consistent computatio-
nal procedure proposed in Ref. [2]. In using such a procedure the dynamic parame-
ters of the ideal single-crystal material, c

(0)
11 = c

(0)
11 /ρ, c

(0)
12 = c

(0)
12 /ρ, c

(0)
44 = c

(0)
44 /ρ,

should be replaced by the e�ective ones, c11, c12, c44, of the crystallite in the real bulk
specimen, the e�ective moduli being calculated also from the four ultrasonic velocities
and symmetry rules given by Eqs. (9). Contrary to the problem de�ned Ref. [1], the
problem of �nding the maximum-entropy estimate of the function p(ξ, ϕ, φ) and the
values of material parameters, c11, c12, c44, from the results of the measurements of
four propagation velocities V eij of ultrasonic waves and from the rules of macroscopic
orthorhombic symmetry is not unambiguous. To make a choice between numerous so-
lutions to the problem, Lewandowski [2] proposed the criterion of the minimum rela-
tive di�erence between the values of the material parameters, c11, c12, c44, obtained in
the procedure of the maximum-entropy estimate, and their analogues, c

(0)
11 , c

(0)
12 , c

(0)
44 ,

referring to the same (or the most similar) ideal material in the virgin (before defor-
mation) state. Obviously, a great di�culty of the analysis is encountered when one
wishes to �nd the solution to such a problem of great complexity. In considering this
problem, only the concepts and equations required in this study are reiterated herein
after [2].

In the present paper, the method proposed in Ref. [2] is utilized for the estimation
of the local texture and local basic material parameters of a steel plate which was rolled
uniaxially in the situation where the edges parallel to the rolling direction were free.
In this way, we seek the answer on the question how strongly are some local material
parameters and the local texture in�uenced on by the distance x between an observation
point r on a plate and one of the two plate edges, which are parallel to the rolling
direction.
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3. Measurements and numerical analysis

The measurements have been con�ned to measuring only the ultrasonic velocities
V e11, V e33, V e13, which are involved in the so-called basic system of three equations,
and additionally the velocity V e32. The twelve equally spaced observation (measurement)
points have been chosen as lying on a straight line in the rolling plane, the straight line
being perpendicular to the 0x1 (rolling) direction. The measurement points have been
chosen at the distances x = (0.02, 0.04, 0.06, ..., 0.24)m from the reference 0x1-edge of
the plate.

The volume of a macroscopic sample is regarded as large enough to include a large
number of crystallites with each of the occurring orientations. Then, it is reasonable
to assume that the measured velocities of ultrasonic pulses propagating through such
a macroscopic sample (the pulses being generated by a transducer oscillating normally
or transversely to the coupling surface) are equal to the propagation velocities of the
respective ultrasonic waves.

The propagation velocities of waves propagating normally to the rolling plane (V e33,
V e32) have been measured by using commercially available wide-band ultrasonic trans-
ducers having a maximum middle frequency of 2.5MHz. By making use of re�ection, a
single transducer served as both a transmitter (source) and a receiver (detector). The
longitudinal and shear waves propagating parallel to the rolling plane, i.e. V e11 and
V e13, respectively, have been generated and detected by using transducers mounted on
Plexiglas wedges and inclined at such angles to the plate surface that ensure the values
of the refraction angles of the waves to be nearly critical (equal to 90◦). These pieces of
equipment allow the transit time of acoustic waves to be measured for all desired direc-
tions. The transit distance is to be regarded for the �rst pair of waves (V e33, V e32) as
the double plate thickness at the region of the coupling of the transducer and plate, the
plate thickness being equal to 0.02m. Similarly, the transit distances are to be regarded
for the second pair of waves, V e11 and V e13, as the distances between the geometrical
centres of the regions of coupling of the plate with the transmitter and receiver, the dis-
tances being equal to 0.182m and 0.0985m, respectively. The propagation velocities of
the second pair of waves deduced from the transit times are regarded to be the velocities
at the distances x from the reference 0x1-edge, x being determined by the middles of
the respective distances between the geometrical centres of the regions of coupling of the
plate with the transmitter and receiver. The transit time was measured with an error
equal to 5 · 10−10 s. The �nal results of the determination of the ultrasonic velocities for
the twelve values of x from the transit time are presented in Figs. 1 � 2.

In the subsequent numerical analysis, we examine the texture in the twelve equally
spaced observation points by utilizing for each observation point separately the results of
the measurements of the ultrasonic velocities V e11, V e33, V e13, which are involved in the
basic system of three equations, and additionally the velocity V e32. It means that �rst we
�nd for each observation point separately the analytical form of the maximum-entropy
probability density function p(ξ, ϕ, φ), which is that given by Eq. (15). On evaluating
the material parameter ca for each observation point from Eq. (9), after substituting
Vij = V eij , j = 1, 2, 3, the second step was to calculate the two missing velocities V e12
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Fig. 1. Velocities V e11 and V e33 of longitudinal waves plotted against the distance x between an
observation point on the steel plate and one of the two plate edges parallel to the rolling direction.
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Fig. 2. Velocities V e13 and V e32 of shear waves plotted against the distance x between an observation
point on the steel plate and one of the two plate edges parallel to the rolling direction.
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and V e22 (for each observation point as well) from the following equations:

V e12 =
√

Ca − V e2
11 − V e2

31 ,
(16)

V e22 =
√

Ca − V e2
12 − V e2

23

which are deduced from the macroscopic othorhombic symmetry, i.e. are derived also
from Eq. (9). In this way for each observation point we have arrived at the following set
{V eij} of the values of the six velocities

{V eij} = {V e11, V e22, V e33, V e12, V e23, V e31}. (17)

As it will be pointed out below, the knowledge of the set (17) enable us to make some
check of the actual accuracy of calculating digitally the partition function Z, Lagrangian
multipliers L1, L3, L5 and material parameters c11, c12, c44. In the situation where the
material parameters c11, c12 and c44 are unknown, the task consists of �nding Z, L1,
L3, L5, c11, c12 and c44 for each observation point separately from Eqs. (3) � (8), (14).
Seeking the texture for each of the twelve observation points, we utilize the numerical
procedure proposed in Ref. [2] for each such a point separately. Any full description of
the numerical method will be omitted from this paper for the sake of brevity.

As was mentioned above, the partition function Z, Lagrangian multipliers L1, L3, L5

and single-crystallite (grain) material parameters c11, c12, c44 are to be determined from
Eqs. (3) � (8), (14). However, these equations present so complicated nonlinear dependen-
cies of the quantities Z, L1, L3, L5, c11, c12 and c44 on each other that the problem of
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Fig. 3. E�ective single-crystallite material parameters c11, c12, and c44 calculated from ultrasonic
measurements plotted against the distance x between an observation point on the steel plate and one of

the two plate edges parallel to the rolling direction.
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evaluating these quantities from Eqs. (3) � (8), (14) is not unambiguous. This raises the
need to make a choice between numerous solutions of the problem. In this way arises
the need to provide a constructive criterion for choosing one set of Z, L1, L3, L5, c11,
c12 and c44 from all such sets satisfying Eqs. (3) � (8), (14). Following Ref. [2], in the
subsequent text we con�ne ourselves only to present numerical results obtained in the
situation where the criterion of the minimum value of a di�erence is used, the proposal
of the criterion of the minimum di�erence being described after Ref. [2] below.

First we suppose that the rolled polycrystalline material (steel) we are dealing with
herein is such that, on one hand, all the values of the e�ective material parameters, c11,
c12 and c44, of a single cubic crystal in the bulk sample of the rolled material are un-
known and, on the other hand, all the parameter values, c

(0)
11 , c

(0)
12 and c

(0)
44 , of a single

cubic crystal of the polycrystal material (or a material as similar to that as possible)
in the virgin state (before deformation) are known from measurements. In accordance
with the criterion of the minimum di�erence, c11, c12 and c44, are as close to c

(0)
11 , c

(0)
12

and c
(0)
44 , respectively, as it is allowed by Eqs. (3) � (8), (14). Moreover, if we are inter-

esting in rolled steel, similarly as in Refs. [1, 2], and its parameters' values c
(0)
11 , c

(0)
12

and c
(0)
44 are unknown, it is supposed that such a virgin material for the rolled steel

may be approximated by BCC Fe, which is characterized by the following values of C
(0)
11 ,

C
(0)
12 , C

(0)
44 :

c
(0)
11 = 2.5982d + 07

(m
s

)2

,

c
(0)
12 = 1.6857d + 07

(m
s

)2

, (18)

c
(0)
44 = 1.5843d + 07

(m
s

)2

.

Now we de�ne the di�erence parameter Qc by the following formula, using the FOR-
TRAN 77 intrisinc functions DMAX1 and DABS

Qc = DMAX1 (Gc11, Gc12, Gc44). (19)

The nomenclature introduced in Eq. (17) is as follows:

Gcij = DABS
[
(cij − c

(0)
ij )/c

(0)
ij

]
. (20)

According to the choice rule applied herein after Ref. [2], we use this set of the values of
Z, L1, L3, L5, c11, c12 and c44 satisfying Eqs. (3) � (8), (14), which contains such values of
the material parameters c11, c12 and c44 that lead to the minimum value of the di�erence
parameter Qc and simultaneously contains such values of Z, L1, L3, L5 that lead to the
probability density function p(ξ, ϕ, φ) achieving the maximum value of Shannon entropy .
In this way, we formulate the criterion of the minimum di�erence.

On �nding for each of the twelve observation points the partition function Z and
Lagrangian multipliers L1, L3, L5, the maximum-entropy probability density functions,
p(ξ, ϕ, φ), are known for all the observation points. Then the next step was to make the
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use of the functions p(ξ, ϕ, φ), and the material parameters c11, c12 and c44 for calculating
the ultrasonic velocities V m11, V m22, V m33, V m12, V m23, V m31 for each of the twelve
observation points. In the remainder of this paper, the value of a velocity Vij will be
denoted by V mij , if it is calculated in the maximum-entropy approximation. Thus on the
basis of the previously determined maximum-entropy estimate of the probability density
function p(ξ, ϕ, φ) and the material parameters c11, c12 and c44, all the six ultrasonic
velocities V m11, V m22, V m33, V m12, V m23, V m31 were calculated from Eqs. (3) � (8)
for each observation point. By comparing in pairs the values of velocities V m11, V m22,
V m33, V m12, V m23, V m31 with their analogues de�ned by Eqs. (17), it was possible to
have some check of the actual accuracy of calculating digitally the partition function Z,
Lagrangian multipliers L1, L3, L5 and material parameters c11, c12 and c44 by employing
a numerical method, which consists of a succession of iterations with increasing accuracy
of calculation. To have some estimation of the actual accuracy of calculation, the error
parameter Qm has been used. Qm had been de�ned in Ref. [2] using the FORTRAN 77
intrisinc function, DMAX1, which returns the maximum value in the argument list. Qm

had been de�ned by the following formula:
Qm = DMAX1(Gm11, Gm22, Gm33, Gm12, Gm23, Gm31). (21)

The nomenclature introduced in Eq. (21) is as follows
Gmij = DABS [(V mij − V eij)/V eij ] , (22)

where the FORTRAN 77 intrisinc function DABS returns the absolute value of its argu-
ment.

In solving numerically the system of Eqs. (3) � (8), (14) with respect to Z, L1, L3,
L5, c11, c12 and c44 for each of the twelve observation points, the succession of iterations
with increasing accuracy of calculation was continued as long as the error parameter
Qm became less than 1.0× 10−6. In this way we obtained the numerical results given in
Table 1.

In each of the twelve columns of Table 1, there is presented a numerical solution of
the system of Eqs. (3) � (8), (14) with respect to Z, L1, L3, L5, c11, c12 and c44, which are
calculated with an exactness characterized by the values of the parameters of error, Qm,
and di�erence, Qc. The values of Qm and Qc are given in each column in the before last
row and in the last one, respectively. In all columns, the error parameters Qm are less
than 1.1×10−8. The x-th column (x = 2, 4, 6, ..., 24 cm) is the set of the values of Z, L1,
L3, L5, c11, c12 and c44 which satis�es Eqs. (3) � (8), (14), after inserting the results of the
measurements the observables V11, V33, V13, and V32 performed in the x-th observation
point and employing the symmetry rules given by Eqs. (9). Moreover, one can say that
the x-th column contains such values of the material parameters c11, c12 and c44 that
lead to the minimum value of the di�erence parameter, Qc, and simultaneously contains
such values of Z, L1, L3, L5 that lead to the maximum-entropy estimate of the function
p(ξ, ϕ, φ) for the observables V11, V33, V13, (and V32). For these reasons, the values of Z,
L1, L3, L5, c11, c12 and c44, which are given in each column, should be regarded in the
paper as the solution to the problem under consideration for the respective observation
point.
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Table 1. Results of numerical calculations of Lagrangian multipliers and material parameters from
ultrasonic measurements for twelve observation points.

x [cm] 2 4 6 8
Z 6.98979 7.01548 7.12077 7.07534
L1 −1.51127138407 −1.52080828560 −1.52376497056 −1.59628175935

L3 0.839757785471 0.90380655508 0.89713214274 1.00258928214
L5 1.30840170534 1.292058967 1.22100600410 1.2274019498

c11 [m2s−2] 2.72759× 107 2.73678× 107 2.63767× 107 2.42525× 107

c12 [m2s−2] 1.84753× 107 1.83255× 10−1 1.88247× 107 2.01129× 107

c44 [m2s−2] 1.41477× 107 1.40824× 107 1.45381× 107 1.55000× 107

c [m2s−2] −1.37794× 107 −1.16776× 107 −0.896665× 107 −0.894442× 107

ca [m2s−2] 5.55712× 107 5.55326× 107 5.54530× 107 5.52525× 107

Qm 9.85135× 10−7 9.22084× 10−7 8.68158× 10−7 1.54281× 10−7

Qc 1.29988× 10−1 1.35226× 10−1 0.99639× 10−1 0.98409× 10−1

x [cm] 10 12 14 16
Z 7.41466 7.30817 7.43995 7.44211
L1 −1.61829511744 −1.52896286792 −1.60507903061 −1.61990847820

L3 0.85983673731 0.911152470345 0.87014804885 0.85225414589
L5 1.14268717833 1.07185579723 1.09977675460 1.13241671318

c11 [m2s−2] 2.44562× 107 2.44249× 107 2.45795× 107 2.45747× 107

c12 [m2s−2] 1.97888× 107 1.98309× 107 1.96878× 107 1.96895× 107

c44 [m2s−2] 1.54512× 107 1.54737× 107 1.54021× 107 1.53979× 107

c [m2s−2] −2.62351× 107 −2.63534× 107 −2.59126× 107 −2.59106× 107

ca [m2s−2] 5.53586× 107 5.53723× 107 5.53838× 107 5.53705× 107

Qm 9.69190× 10−7 9.77151× 10−7 8.52790× 10−7 9.45054× 10−7

Qc 1.40431× 10−1 1.42255× 10−1 1.36023× 10−1 1.36097× 10−1

x [cm] 18 20 22 24
Z 7.38138 7.21346 7.18267 7.19703
L1 −1.61571682028 −1.55860866956 −1.60577916205 −1.60124022736

L3 0.85416318209 0.86426789517 0.85955105606 0.85111195804
L5 1.16982116073 1.22217644441 1.30172316513 1.29450264631

c11 [m2s−2] 2.53361× 107 2.65628× 107 2.66659× 107 2.64029× 107

c12 [m2s−2] 1.92828× 107 1.86581× 107 1.86364× 107 1.88732× 107

c44 [m2s−2] 1.50390× 107 1.44553× 107 1.44134× 107 1.45692× 107

c [m2s−2] −2.40246× 107 −2.10060× 107 −2.07972× 107 −2.16058× 107

ca [m2s−2] 5.54140× 107 5.54734× 107 5.54927× 107 5.55414× 107

Qm 4.79940× 10−7 9.42212× 10−7 3.86125× 10−7 9.66848× 10−7

Qc 1.17873× 10−1 1.05939× 10−1 1.09158× 10−1 0.98728× 10−1
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The degree and type of the texture in each of the twelve observation points can be
determined in the fullest detail by making use of the function p(ξ, ϕ, φ), which gives the
probability density of a given crystallite having a speci�ed orientation with respect to
the axes of the Cartesian coordinate system of the sample (plate), the crystallite being
placed in the region of the considered observation point in the sample. Following Refs.
[2], we use the quantities

nϕ(ϕ2, ϕ1) =

2π∫

0

ϕ2∫

ϕ1

1∫

−1

p(ξ, ϕ, φ) dξ dϕ dφ, (23)

nθ(θ2, θ1) =

2π∫

0

2π∫

0

ξ1∫

ξ2

p(ξ, ϕ, φ) dξ dϕ dφ, (24)

as examples of such speci�cations. Here

θ1 = arccos ξ1 , θ2 = arccos ξ2 , 0 ≤ θ2 ≤ π (25)

and nϕ(ϕ1, ϕ2), nθ(θ1, θ2) denote the fractions of the total number of crystallites (in the
region of the considered observation point in the sample) with the angle of precession, ϕ,
lying in the interval ϕ1 ≤ ϕ ≤ ϕ2 and with the angle of nutation, θ, lying in the interval
θ1 ≤ θ ≤ θ2, respectively. In Fig. 4, examples of numerical calculations of nϕ(ϕ1, ϕ2) are
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Fig. 4. nϕ(ϕ2, ϕ1) de�ned by Eq. (23) and plotted against both the distance x between an observation
point on the steel plate and one of the two plate edges parallel to the rolling direction as well as
against the the number of each subdomain of the precession angle ϕ, the whole domain [0◦, 360◦] of the
precession angle ϕ being divided into parts (subdomains) of equal size, 18◦, numbered from 1 to 20,

with centres at ϕ0 = (ϕ1 + ϕ2)/2 = 9◦, 27◦, 45◦, ..., 351◦.
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presented (for each of the twelve observation points) with the whole domain [0◦, 360◦]
of the precession angle ϕ being divided into parts (subdomains) of equal size, 18◦, with
centres at ϕ0 = (ϕ1 + ϕ2)/2 = 9◦, 27◦, 45◦, ..., 351◦. Similarly, in Fig. 5, examples of
numerical calculations of nθ(θ1, θ2) are presented (also for each of the twelve observation
points) with the whole domain [0◦, 180◦] of the nutation angle θ being divided into parts
(subdomains) of equal size, 18◦, with centres at θ0 = (θ1 + θ2)/2 = 9◦, 27◦, 36◦, ...,
171◦. For each region of the twelve observations points, the particle fractions nϕ(ϕ1, ϕ2)
and nθ(θ1, θ2) were calculated separately for each subdomain and the results of these
calculations are presented in Figs. 4 and 5.
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Fig. 5. nθ(θ2, θ1) de�ned by Eq. (24) and plotted against both the distance x between an observation
point on the steel plate and one of the two plate edges parallel to the rolling direction as well as against
the number of each subdomain of the nutation angle θ, the whole domain [0◦, 180◦] of the nutation
angle θ being divided into parts (subdomains) of equal size, 18◦, numbered from 1 to 10, with centres at

θ0 = (θ1 + θ2)/2 = 9◦, 27◦, 36◦, ..., 171◦.

From Figs. 4 and 5 it can easily be seen that rolling, say, in the 0x1 direction, leaves
the crystallites in some non-random orientations. The statistics of the forced non-random
orientations leads to the occurrence of the most preferred intervals of the Euler angles,
the preferred orientation being a periodic function of the Euler angles. Obviously, all
the symmetry properties of nϕ(ϕ1, ϕ2) and nθ(θ1, θ2), which are shown in Figs. 4 and 5,
result in the orthorhombic symmetry of the macroscopic mechanical properties of the
polycrystalline aggregate (rolled steel). Similarly as in Ref. [2], the preference of the
crystallite orientations, which is revealed by the numerical results presented in Figs. 4
and 5, can be de�ned in the crystallographic terms as follows: If a solid plate made of
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cubic crystallites with the highest symmetry is uniaxially rolled, say, in the 0x1 direction,
the rolling process leaves the crystallites in a non-random orientations with an orienta-
tion preference for the crystallographic plane [1, 1, 0] to be parallel to the rolling plane
x1x2 as well as for the crystallographic direction 〈1, 1, 0〉 to be parallel to the rolling
direction Ox1.

4. Final remarks and conclusions

This paper is concerned with the nondestructive ultrasonic method of the estimation
of the local texture and local basic material parameters of a steel plate which was rolled
uniaxially in the situation where the edges parallel to the rolling direction were free. The
aim of the paper was also to estimate how strongly are the local texture and mechanical
properties in�uenced on by the distance x between an observation point determined by
the position vector r and one of the two plate edges parallel to the rolling direction,
in the situation where the edges parallel to the rolling direction were free during the
rolling process. In the presented method, there is involved the inversion of the problem of
calculating the ultrasonic velocities from texture with making use of the Voigt averaging
procedure. The inversion, which has been performed with using the information theory
approach, leads to the maximum-entropy estimate of the probability density function
of the crystallite orientation, p(ξ, ϕ, φ). This function for each of the twelve observation
points is of the form given by Eq. (15), this form being implied by Eqs. (3), (5), (7), (14)
under the assumption that the ultrasonic velocities (observables) V e11, V e33 and V e13

in these regions are known from measurements. Next the same Eqs. (3), (5), (7), (14)
together with Eqs. (4), (6), (8), (9) and the criterion of the minimum di�erence are used
for determining, for each of the twelve observation points successively and separately,
both the exact form of p(ξ, ϕ, φ) (by evaluating the three Lagrangian multipliers L1,
L3, L5 and normalization constant Z) and the values of three single-crystal material
parameters (c11

.= c
(eff)
11 /ρ, c12

.= c
(eff)
12 /ρ, c44

.= c
(eff)
44 /ρ). These quantities and parameters

are to be calculated from the values of four observables (V e11, V e33, V e13 and V e32) and
orthorhombic symmetry rules given by Eqs. (9).

The analysis presented in Ref. [2] leads to the relations between the probability density
function of the crystallite orientation, p(ξ, ϕ, φ), as well as the values of single-crystal
material parameters cij , ij = 11, 12, 44, of the rolled material and ultrasonic velocities
(V e11, V e33, V e13 and V e32). The present study, moreover, leads to showing that the
quantities and parameters involved in the analysis performed by using the method of
Ref. [2] are considerably in�uenced on by the distance x = (0.02, 0.04 0.06, ..., 0.24)m
between an observation point on the steel plate and one of the two plate edges parallel
to the rolling direction, the edges being free during the rolling process. If along a straight
line of distance x the rolling load and other forces acting in the rolling process were
constant and the microstructure of the material in the virgin (before deformation) state
had been statistically homogeneous, then the changes in the values of all the quantities
and parameters (V e11, V e33, V e13, V e32; p(ξ, ϕ, φ), L1, L3, L5, Z; cij , ij = 11, 12, 44),
which are observed in the material in a plane parallel to the rolling plane, would be both
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constant along the straight line and symmetrical with respect to the axis of geometrical
symmetry of the plate, the symmetry axis being parallel to the rolling direction. From
Table 1 and Figs. 1 � 3 it can immediately be seen that the deviations of the changes
from the axial symmetry are considerable in the case of the material under examination.
These deviations contain information on the local inhomogeneity of the material under
investigation.

In the presented method, there is involved the inversion of the problem of the rela-
tions between the probability density function of the crystallite orientation, p(ξ, ϕ, φ),
and the values of the e�ective single-crystal material parameters, cij , ij = 11, 12, 44,
of the rolled material as well as of the measured ultrasonic velocities (V e11, V e33, V e13

and V e32). This analysis has been performed for the polycrystalline aggregate with or-
thorhombic macroscopic symmetry, the aggregate being composed of cubic crystals. In
every heterogeneous elastic body, the ultrasonic velocities depend on the e�ective density
and components of the so-called e�ective dynamic tensor of sti�ness of the bulk sample as
well as on the frequency of the ultrasonic waves. In turn, the components of the e�ective
dynamic tensor of sti�ness of the bulk sample are determined by the probability density
function of the crystallite orientation, p(ξ, ϕ, φ), as well as by the values of the e�ective
single-crystal material parameters, cij , ij = 11, 12, 44. In the limit, as the wavelength
increases to in�nity (or the frequency diminishes to zero), the dynamic e�ective moduli
in these relations may be replaced by the static e�ective moduli, if the polycrystal under
consideration may be regarded as an ideal polycrystalline aggregate. In accordance with
the long-wavelength approximation and in view of the common opinion that plastic de-
formation does not induce any considerable changes in the static values of single-crystal
material parameters, cij/ρ, ij = 11, 12, 44, it seems to be reasonable to replace the
e�ective dynamic values of these material parameters, which are involved in problems
of ultrasonic testing of plastically deformed materials, by their static values measured
before deformation. However, from the the twelve examples, which has been considered
above and in which 9.84% < Qc < 14.23%, it can easily be seen that such assumptions
may lead to considerable errors in analysing problems concerning the application of ul-
trasonic methods in material science, because observed changes in acoustic (ultrasonic)
anisotropy may be accompanied by considerable changes in the values of cij/ρ, ij = 11,
12, 44.

In this context, it can easily be seen the advantage of the approach applied above
and proposed by Lewandowski in [2] over that which are based on the long-wavelength
and ideal polycrystal approximations. By contrast, one might claim that the approach
proposed in this paper is more free because it allows us to determine completely the
e�ective single-grain dynamic properties and the texture of the bulk sample under ex-
amination from experimentally observed data (velocities V e11, V e33, V e13, V e32) and
Eqs. (3) � (8), (9), (14). In this way we avoid neglecting the e�ects of the changes in the
grain shape (morphological texture) as well as the in�uence of the distributions of such
material defects as voids, impurities, residual stress, etc. on the mechanical and propa-
gation properties of the polycrystalline aggregate made of steel. In this approach we also
avoid neglecting the in�uence of the scattering and mechanical energy dissipation on the
propagation of ultrasonic waves.
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