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The present article describes inelastic light scattering or the theory of photon acoustic-
phonon interactions to which the coherent state formalism can be applied; it belongs
partly to quantum acoustics. Such quantum calculations lead to the same results as the
classical ones, and what is important, they are not in full agreement with the results of
measurements. The article provides some formulae useful for comparison of the optical
signals intensity in Brillouin light scattering experiments.

1. Introduction

The inelastic scattering of photons by acoustic phonons, is still not described in depth
as a quantum phenomenon in condensed matter physics. In typical areas of research the
classical theory of elasticity as well as classical electrodynamics is widely applied. One
of the most promising quantum type formalism of performing this task is the coherent
state method worked out by R.J. Glauber and J.R. Klauder [1 � 4]. The formalism
has been applied with great success in di�erent areas of physics, especially in quantum
optics. The formalism's value results from the fact that it describes the physical reality
as a bridge between the quantum and classical phenomenon.

2. Basic elements of the quantum-like approach to the Brillouin scattering

As a basic and most important quantity in the inelastic light scattering theory, the
spectral distribution of the electric �eld in a scattered electromagnetic wave should be
calculated. This function is directly connected with quantum e�ects, where the scattering
process between photon and phonon dominates.

From this point of view the principle substitutions required to perform quantum-like
calculations will be introduced. The amplitude and time dependence for the acoustic
waves can be written as follows [5]

|u|2 exp
[
iωphon(µ)τ

] →
〈∥∥∥

(
n′‖a+(µ)|n

)∥∥∥
〉

exp
[
iωphon(µ)τ

]
, (1)
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|u|2 exp
[−iωphon(µ)τ

] →
〈∥∥∥

(
n′‖a(µ)|n

)∥∥∥
〉

exp
[−iωphon(µ)τ

]
, (2)

u(K) → a(K), (3)

where the acoustic waves displacements u(K), as a function of the acoustic wave vector
K, are replaced by the creation operator a+ and the annihilation operator a, and the
acoustic wave amplitudes are replaced by the average expected values of the a+ and a

operators in a representation of a number of particle states |n〉. The time parameter of
the phenomenon is the time of correlation τ . It appears in the autocorrelation function
for the electric �eld of the scattered light 〈E′(K, t + τ) ·E′∗(K, t)〉. Both the amplitudes
(1, 2) can be expressed by the average number of phonons (bosons) being in a state of
frequency ωphon, in the mode µ (longitudinal or transverse of the �rst or second kind),
in the medium of density ρ and of the total volume V , namely

〈∣∣∣(n′|a+(µ)|n
∣∣∣
2
〉

=
V

(2π)3
· ~ωphon(µ) (〈nµ〉+ 1)

2ρω2
phon(µ)

, (4)
〈∣∣∣(n′|a(µ)|n

∣∣∣
2
〉

=
V

(2π)3
· ~ωphon(µ) (〈nµ〉)

2ρω2
phon(µ)

, (5)

that is controlled by the Bose-Einstein distribution

〈nµ〉 =
1

exp
[~ωphon(µ)

kT
− 1

] . (6)

Now, in this formalism, the spectral distribution function for Brillouin scattering can
be expressed as follows [5],

S(K, ω′) =
∑

µ

{
const · ~ωphon(µ)Γµ

ω2
phon(µ)

[
〈nµ〉[

ω′ − (ω0 + ωphon(µ))
]2 + Γ 2

µ

+
〈nµ〉+ 1[

ω′ − (ω0 − ωphon(µ))
]2 + Γ 2

µ

]}/
2

∑
µ

const
ωphon(µ)

~ωphon(µ) (2 〈nµ〉+ 1) , (7)

where ω0 is the incident light angular frequency. The above formulae contains quantum
parameters. For example, the reciprocal of Γµ can be interpreted as the life-time of a
phonon from the branch µ. However, it is known that above calculations began from a
classical point of view, and were generalized by arti�cial substitutions. The next section
reviews some de�nitions of the coherent state formalism because the a+ and a operators
and the number of quasi-particles 〈n〉 belong to such a theory.

3. Definition of coherent states

Coherent states are applied in the description of physical processes where bosons,
especially phonons, are involved. The coherent state |α〉 can be de�ned as a normalized
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eigen-state of the annihilation operator [1]. The equation describing this situation can be
written as follows

a|α = α|α〉, (8)

where a is the annihilation operator and α is its eigen-value. The α symbol might be
interpreted as a number of phonons participating in the light scattering process.

Consider any optional coherent state [1]

|α〉 = exp
[
−1

2
|α|2

] ∞∑
n=0

αn

√
n!
|n〉, (9)

and calculate its expected value in a representation of the coherent state basis of the
number of particles operator N = a+a. Acting on both the left and right sides of the
above equation by the 〈n| state we obtain

〈n|α〉 = exp
[
−1

2
|α|2

]
αn

√
n!

. (10)

Then both sides can be raised to the second power to calculate the probability density

|〈n|α〉|2 = exp
[−|α|2] (α2)n

n!
. (11)

The above formula is the Poisson distribution, where the |α|2 value measures the average
number of states occupied by a coherent state |α〉.

The physical sense of the above de�nitions can be clearly recognized by the fact that
the average number of quasi-particles occupying any optional state, the 〈n〉 quantity, is
governed by the well known Bose-Einstein distribution

〈n〉 =
1

exp
[
~ωphon

kT

]
− 1

, (12)

where ωphon is the frequency of a state (phonon), and T is the temperature of the medium.
In the next considerations, the classical calculations will be modi�ed by the appropriate
exchanges between the kT energy and the ~ω(〈n〉+ 1/2) quantum quantity.

4. Calculations of the scattering efficiency.
The ratio of two inelastically scattered optical signals

In this section three important formulae will be provided. Let us de�ne the ratio of
the square of the electric �eld in the scattered light to the square of the electric �eld in
the incident light (scattering e�ciency) in the following form

A =

〈|E′|2〉

〈|E0|2〉 . (13)
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Next, taking into account the above we can derive the ratio of the Aquant quantity
calculated from the quantum point of view to the Aclass calculated from the classical
point of view, namely

Aquant

Aclass
=
~ω

(
〈n〉+

1
2

)

kT
. (14)

At room temperature this ratio is, as a very good approximation, equal to one.
In typical inelastic light scattering experiments of the Brillouin type it is possible

to observe for speci�c experimental con�gurations, simultaneously, two optical signals
resulting from scattering on the two transverse or quasi-transverse acoustic waves of
hypersonic frequency. Very often the scattered signals are very close when the acoustic
frequencies are close. The ratio of intensities from these signals contains information on
the acoustic wave frequencies and the wave-vectors. We can describe in a similar way
this quantity from both the quantum and classical points of view. The classical formula
is as follows

I1

I2
≈

(
K1ω2

K2ω1

)2

, (15)

where the ratio is proportional to the square of frequencies and to the wave-vectors ratio
of the two acoustic waves. The same formula calculated from the quantum point of view
is equal to

I1

I2
≈

(
K1

K2

)2

· ω2

ω1
·
〈n1〉+

1
2

〈n2〉+
1
2

=
(

K1

K2

)2

· ω2

ω1
·
exp

[
~ω1

kT

]
+ 1

exp
[
~ω1

kT

]
− 1

·
exp

[
~ω2

kT

]
− 1

exp
[
~ω2

kT

]
+ 1

, (16)

where the dependence on temperature is clearly evident.

5. Example of a theoretical and experimental comparison

As an example lets us consider experimental data in that we deal with the two acoustic
wave frequencies measured by the Brillouin light scattering method [6 � 9] (Fig. 1) in
the LiNbO3 crystal. The values of the ratio of intensities from experiment compared
with those calculated from Eqs. (15) and (16), are given in Table 1. Experiment and
calculations have been made for di�erent angles between light wave vectors and are valid
for room temperature.

However, other theoretical results based on the theory of elasticity and the classi-
cal elasto-optic interactions provide for the case where the angle between light wave
vectors was equal to 90◦ an additional and unfortunately quite di�erent value 0.14 [6].
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Fig. 1. The ratio of the Brillouin spectrum signals from the LiNbO3 crystal. The equipment used in
the measurements included a single-mode argon ion laser working at 514.5 nm wavelength with a power
equal to about 100mW and using the single-pass Fabry�Perot interferometer. For the low-level intensity

light, the detection by the photon counting method was used.

Table 1. Comparison of the measured values of ratio of signals with theoretical calculations in the
LiNbO3 crystal.

Angle First wave frequency Second wave frequency Ratio of signals Ratio of signals
(deg.) (GHz) (GHz) Experiment Theory

74 28.08± 0.23 20.81± 0.17 1.12± 0.02 0.55
78 28.66± 0.21 21.96± 0.19 1.17± 0.02 0.59
82 29.96± 0.30 22.58± 0.27 1.06± 0.04 0.57
102 27.47± 0.21 23.40± 0.19 1.01± 0.01 0.73
106 28.32± 0.24 22.25± 0.19 1.01± 0.03 0.62
110 29.30± 0.52 23.20± 1.11 1.00± 0.01 0.63

This kind of calculations are based on the so-called scattering e�ciency R, which mea-
sures the cross section divided by the total volume V of a scattered medium, namely
[7 � 9]

R =
1
V
· dσ

dΩ
. (17)

Calculating the ratio of two values of R for two cases of frequencies discussed above,
respectively, one obtains [6]

R1/2 =
π2kTn8

0

2λ4X1/2

[
p41γ1 −

(
p66 − r22e16

ε11

)
γ2 −

(
p14 − r22e15

ε11

)
γ3

]2

, (18)

that is equivalent to the ratios obtained from Eqs. (15) and (16). The meaning of the
symbols in the above formula is as follows: k is the Boltzmann constant, T is the temper-
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ature of the crystal, λ is the light wavelength, n0 is the refractive index of the medium,
pik, rik, and eik are elements of the elastooptic Pockels tensor, the electrooptic tensor,
and the piezoelectric tensor, respectively. X1/2 are the eigen-values and γi is the eigen-
vector element (it describes the state of polarization of the acoustic wave) of a so-called
�characteristic matrix" de�ned as Qik = cef

ijklχjχl, where the cef
ijkl are elastic constants

of the medium and where the unit vector χχχ informs of the direction of propagation of
the acoustic wave. The eigen-values X1/2, divided by the density of the medium inform
us of the squared velocities of the two quasi-transverse waves.

The disagreement obtained between the experimental data and theory for the cross
section can not be explained in the frame of the presented results.

6. Conclusions

In the article chosen theories of inelastic light scattering has been compared with the
Brillouin scattering results. In some aspects they are of quantum character, in other mo-
ments they are almost classical. By an appropriate substitution, the theory was modi�ed
by the use of the average number of phonons (bosons) 〈n〉 expressed by the Bose�Einstein
distribution. However the applied methods do not provide a satisfactory agreement be-
tween the experimental results and theoretical predictions, especially if we take into
account the relative intensity of the two optical signals inelastically scattered on acoustic
waves. The quantity 〈n〉 is only in one case concerned with the more general theory of
coherent states.
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