PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of sound transmission loss in electrorheological fluids under DC voltage

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrorheological (ER) liquids possess the ability to change their physical properties like the apparent viscosity and modulus of elasticity which is related to stiffness under influence of external electric field. They serve successfully in the field of semi-active/active vibration control - as well as in many other areas. The STL was investigated for various kinds of ER suspensions in the frequency range from 100 Hz to 2 kHz. An influence of the electric field density on the STL was different for normal and tangential sound wave propagation. In both cases the STL decreases with the increasing electric field density. Those properties can be potentially useful in sound propagation control applications.
Słowa kluczowe
Rocznik
Strony
229--240
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • College of Engineering, Department of Technology, Acoustics Laboratory, Mailcode 6603, Carbondlae, IL 62901-6603, szary@engr.siu.edu
Bibliografia
  • [1] E. V. Korobko, Z. P. Shulman and G. V. Voronovich, Electrorheological damping in precision systems, Proceedings of SPIE, 3041, 868-873, 1997, Smart Structures And Materials, 3-6 March 1997, San Diego, CA., Bellingham, Wash., SPIE 1997.
  • [2] D. J. Peel, R. Stanway and W. A. Bullough, The ER Long-Stroke Damper: Experimental verification of mathematical models, Rheology and Fluid Mechanics of Nonlinear Materials, FED - 243/MD - 78, 249-259 1997, ASME 1997.
  • [3] S. Choi, Y. Park and C. Cheung, Active vibration control of intelligent composite laminate structures incorporating an electro-rheological fluid, J. Intelli. Mater. Sys. Struct., 7, 411-419, 1996.
  • [4] H. P. Gavin and R. D. Hanson, Electrorheological devices with annular electrodes, Proceedings Of 10th Conference ASCE, Boulder, CO., May 21-24, 1995, 2, 1231-1234, ASCE, New York, 1995.
  • [5] S. J. Dyke, B. J. Spencer, JR., M. K. Sain and J. D. Carlson, Seismic response reduction using magnetorheological dampers, Proceedings The IFAC World Congress, San Francisco, Ca., June 30-July 5, 1996.
  • [6] H. Block and J. P. Kelly, Electro-rheology, J. Physics D: Appl. Physics, 21, 12, 1661-1667, 1988.
  • [7] T. C. Jordan and M. T. Shaw, Electrorheology, IEEE Trans. Electrical Insulation, 24, 5, 849-878, 1989.
  • [8] D. L. Klass and T. W. Martinek, Electroviscous fluids II. Electrical Properties, J. Appl. Physics, 38, 1, 75-80, 1967.
  • [9] A. H. Shiang and J. P. Coulter, A comparative study of AC and DC electrorheological material based adaptive structures in small amplitude vibration, J. Intell. Mater. Systems Struct., 7, 455-469, 1996.
  • [10] S. Kudallur, G. H. Conners and K. W. Buffington, Electrorheological damper for precision applications, Developments in Electrorheological Flows, ASME, FED- 235/MD-71, 21-27, 1995.
  • [11] H. Conrad and Y. Chen, Electrical properties and the strength of electrorheological (ER) fluids [ed] by K. O. Havelka and F. E. Filisko, [in:] Progress in Electrorheology, 55-85, Plenum Press, New York, 1995.
  • [12] C. J. Radcliffe, J. R. Lloyd, R. M. Andersland and J. B. Hargrove, State Feedback Control Of Electrorheological Fluids, presented at 1996 ASME International. Congress & Exhibition, Nov. 17-22, Atlanta, GA.
  • [13] G. Leitmann, Semi-active control for vibration suppression in a system subjected to unknown disturbances, J. Of Circuits, Systems And Computers, 4, 4, 379-393, 1994.
  • [14] Y. Ribakov and J. Gluck, Active control of MDOF structures with supplemental electrorheological fluid dampers, Earthquake Engineering & Structural Dynamics, 28, 143-156, 1999.
  • [15] K. Maemori and T. Sajto, A new type of hydraulic shock absorber using electrorheological fluid, JSME Int. J., Series C, 41, 1, 156-163. 1998.
  • [16] G. Leitmann, Semiactive control for vibration attenuation, J. Intelli. Mater. Systems Struct., 5, 841-846, 1994.
  • [17] M. Yalcintas and J. P. Coulter, Electrorheological material based non-homogeneous adaptive beams, Smart Materials & Structures, 7, 128-143, 1998.
  • [18] D. J. Klingenberg, D. Dierking and C. F. Zukoski, Stress of transfer mechanisms in electrorheological suspensions, Journal Of Chem. Soc. Faraday Trans., 87, 3, 425-430, 1991.
  • [19] J. G. Kohl and J. A. Tichy, Expressions for coefficients of electrorheological fluid dampers, Lubrication Science, 10, 2, 135-143, 1998.
  • [20] M. Parthasahathy and D. J. Klingenberg, Large amplitude oscillatory shear of ER suspensions, J. Non-Newtonian Fluid Mech., 81, 83-104, 1999.
  • [21] Laboratory measurement of the airborne sound barrier performance of automotive materials and assemblies - SAE J1400, May 1990.
  • [22] M. Noras, Sound transmission loss control using electrorheological fluids, December 1999, Ph.D. thesis, Southern Illinois University.
  • [23] L. L. Beranek and I. L. Ver, Noise and vibration control engineering: Principles and applications, Wiley, New York 1992.
  • [24] VersaFloTM Fluids Product Information: Lord® Corporation, Form#P101-ER201A.
  • [25] G. J. Monkman, The Electrorheological effect under compressive stress, J. Physics D: Appl. Physics, 28, 588-593, 1995.
  • [26] L. C. Davis and J. M. Ginder, Electrostatic forces in electrorheological fluids [in:] Progress in Electrorheology, [Ed.] K. O. Havelka and F. E. Filisko, Plenum Press, New York 1995, 107-114.
  • [27] H. Conrad and A. F. Sprecher, Characteristics and mechanisms of electrorheological fluids, J. Of Statistical Physics, 64, 1073-1091, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0004-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.