PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On ultrasonic relaxation study of preferential solvation in quasi two-component aqueous solutions of amides and zinc salts

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the effect of preferential solvation, the ultrasonic attenuation (2-50 MHz) and velocities (3 MHz) in ZnCl2 and 2-chloroacetamide (ClCH2CONH2) solutions in water and its quasi-binary mixtures of the ratio (ZnCl2 + ClCH2CONH2): H2O = 1:55 at 298.15 K have been measured. The creation of specific complexes in the ClCH2CONH2 - H2O - ZnCl2 system have a relaxational character which, within the measurements of the ultrasonic absorption in the frequency range 2-50 MHz, have been observed. On the base of these properties, the kinetic and dynamic parameters of the observed relaxation have been calculated. To bring into relief the influence of the Cl atom in the 2-chloroacetamide molecules for the complexation process, also the system AA - H2O - ZnCl2 has been investigated. The next step of searching was the investigation of the system of CHAA - H2O - ZnBr2, to reduce the influence of the Cl atom within the ZnCl2 molecule in the complexation process. As the results, the observed relaxation processes have been attributed to the creation and disintegration of the following complexes: Zn(H2O)2(CHAA)42+ and Zn2+(H2O)3(CHAA)Cl2-.
Słowa kluczowe
Rocznik
Strony
371--374
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Acoustics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Institute of Acoustics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
Bibliografia
  • [1] T. J. F. DAY, G. N. PATEY, Ion solvation dynamics in binary mixtures, J. Chem. Phys., 106, 2782-2791 (1997).
  • [2] U. KAATZE, T. TELGMANN, P. MIECZNIK, Solvatomer dynamics of aluminium sulfate in dimethyl sulfoxide/water mixtures, Chem. Phys. Lett., 310, 121-129 (1999).
  • [3] P. MIECZNIK, F. EGGERS, Ultrasonic study on the complexation kinetics of N, N-diethylformamide and zinc acetate in aqueous solutions, Acustica/acta acustica, 83, 67-73 (1997).
  • [4] M. L. HORNG, J. A. GARDECKI, A. PAPAZYAN, M. MARONCELLI, Subpicosecond measurements of polar solvation dynamics: coumarin, 153 revisited, J. Phys. Chem., 99, 17311-17337 (1995).
  • [5] M. CHAO, S. J. ROSENTHAL, N. F. SCHERER, L. D. ZIEGLER, G. R. FLEMING, Ultrafast solvent dynamics: Connection between time resolved fluorescence and optical Kerr measurements, J. Chem. Phys., 96, 5033-5038 (1992).
  • [6] S. TANIEWSKA-OSIŃSKA, Electrolytes in binary solvents: An experimental approach, Chem. Soc. Rev., 22, 205-212 (1993).
  • [7] Y. MARCUS, A quasi-lattice quasi-chemical theory of preferential solvation of ions in mixed solvents, Aust. J. Chem., 36, 1719-1731 (1983).
  • [8] A. CHANDRA, Ion solvation dynamics in binary dipolar liquids: theoretical and simulation results for mixtures of Stockmayer liquids, Chem. Phys. Lett., 235, 133-139 (1995).
  • [9] S. GALERA, J. M. LLUCH, A. OLIVA, J. BERTRAN, Preferential solvation of Cl – in binary equimolecular water – methanol mixtures, J. Chem. Soc. Faraday Trans., 88, 3537-3342 (1992).
  • [10] Y. SUWANNACHOT, S. HANNONGBUA, Solvation of lithium chloride in water-hydroxylamine mixtures: A theoretical investigation by means of Monte Carlo simulations, J. Chem. Phys., 102, 7602-7609 (1995).
  • [11] W. BOCH, P. MIECZNIK, Acoustic and volumetric investigations of complexing in aqueous solutions of ZnCl2 and LiJ, Acoustics Letters, 10, 74-79 (1986).
  • [12] N. H. MARCH, Chemical physics of liquids, Gordon and Breach Science Publishers, New York, London 1990.
  • [13] H. B. SILBER, D. SIMON, F. GAIZER, Octahedral – tetrahedral geometry changes for zinc (II) in the presence of chloride ions, Inorg. Chem., 23, 2844-2848 (1984).
  • [14] H. SIGEL, R. B. MARTIN, The colourless ‘Chameleon’ or the peculiar properties of Zn2+ in complexes in solution. Quantification of equilibria involving a change of the coordination number of the metal ion, Chem. Soc. Rev., 23, 83-91 (1994).
  • [15] P. ASSARSSON, F. EIRICH, Properties of amides in aqueous solutions. I.A. Viscosity and density changes of amide – water systems. B. An analysis of volume deficiencies of mixtures based on molecular size differencies (mixing and hard spheres), J. Phys. Chem., 72, 2710-2719 (1968).
  • [16] S. CHALMET, W. HARB, M. F. RUIZ-LOPEZ, Computer simulation of amide bond formation in aqueous solutions, J. Phys. Chem. A, 105, 11574-11581 (2001).
  • [17] P. MIECZNIK, Ultrasonic and volumetric investigations of intermolecular interactions in aqueous solutions of amides, Acustica, 62, 131-140 (1986).
  • [18] G. J. KEARLEY, M. R. JOHNSON, M. PLAZANET, E. SUARD, Structure and vibrational dynamics of the strongly hydrogen-bonded model peptide: N-methyl acetamide, J. Chem. Phys., 115, 2614-2620 (2001).
  • [19] A. M. ZAICHIKOV, Y. G. BUSHUEV, The thermodynamic properties of the water – dimethylacetamide system, Rus. J. Phys. Chem., 69, 1766-1770 (1995).
  • [20] S. OKOUCHI, T. MOTO, Y. ISHIHARA, H. NUMAJIRI, H. UEDAIRA, Hydration of amines, diamines, polyamines and amides studied by NMR, J. Chem. Soc. Fraday Trans., 92, 1853-1858 (1996).
  • [21] M. EIGEN, R. G. WILKINS, The kinetics and mechanism of formation of metal complexes, Adv. Chem. Ser., 49, 55 (1965).
  • [22] U. KAATZE, B. WERHMANN, Broadband ultrasonic spectroscopy on aqueous solutions of zinc (II) chloride. I. Kinetics of complexation, Z. Physical. Chem., 177, 9-26 (1992).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0004-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.