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1. Introduction

This paper is devoted to the discussion of numerical methods for solving an
optimal control problem of a differential-algebraic dynamic system. As for the
the case of optimal control of ordinary differential equations, the idea is based
on dynamic programming, that leads to the Hamilton-Jacobi-Bellman (HJB)
equation (Bellman, 1961), whose well-posedness can be proved in the viscos-

ity sense, see Crandall and Lions (1983), and also Bardi and Capuzzo-Dolcetta
(1997). and BRarles (1994Y The dierratizatinn nf tha HTR anmndine fn o cacles
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papers for such methods, in the case of optimal control problem of a differen-
tial dynamic system, let us mention the historical paper by Kruzkov (1966),
the analysis of time discretization in Capuzzo Dolcetta (1983) and Capuzzo
Dolcetta and Ishii (1984), and the analysis of full discretization by Crandall
and Lions (1984). More recent contributions on such algorithms, including the
analysis of space discretization, may be found in Bardi and Capuzzo-Dolcetta
(1997), Appendix by M. Falcone, Barles and Souganidis (1991), Camilli and Fal-
cone (1999), Falcone (1987), Falcone and Ferretti (2002), and Rouy and Tourin
(1992).

In principle, optimal control of differential-algebraic dynamic systems can be
reduced to the standard framework of optimal control of an ordinary differential
equation. The idea is to extract the algebraic variable from the time derivatives
of the algebraic constraint, i.e., to express the algebraic variable as a function
of state and control, and of some of their derivatives.

However, this cannot always be done. The main reason is that, often, the
dynamics is available, but not its derivatives. This is indeed the main reason for
the design of specific numerical schemes for integration of differential-algebraic
dynamic system, see e.g. Hairer et al. (1980).

In that case, it may be effective to discretize the problem in a way that is
coherent with the spirit of these specialized numerical schemes, except of course
for the fact that one aims nof to have high order accuracy, since the value
function is in general not differentiable.

In this paper we introduce such a method, obtain error estimates, compare
the new approach with the idea of reduction to the standard situation, and
discuss numerical results for both methods on a simple example.

The paper is organized as follows. Section 2 presents the problem and the
main hypotheses. The continuous problem is presented in Section 3, while
Section 4 is devoted to the numerical analysis of the state equation. We obtain
error estimates, in Section 5 for the discrete time optimal control problem, and
in Section 6 for the fully discretized problem. Numerical results are presented
in Section 7.

2. Setting of the problem. Preliminary results

Consider the following differential-algebraic dynamic system,

() fyz(t), 22 (t), u(t)) t >0,
= (yz(t)) t>0, (1)
( )=

Here = stands for the initial condition for the state variable (or differential
varlable] yz(t) € R®, while z,(t) € R is called the algebraic variable; we have
_____ -~ s alam) Nhoavra that ua nes tha notation (1. 2. for the =olution
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initial condition z. The dependence of y, and z, with respect to the control
variable u(t) € R™ is understood and must be clear following the setting of the
problem.

Consider the following infinite horizon optimal control problem:

= 1nf/ U(yz(t), 2:(t), u(z,t))e " dt  for z € R™. (2)
u€Ugq

Here U,q denotes the set of all continuous and piecewise differentiable functions
of [0, 00[ with image in a nonempty compact subset U of R™, £ is a function
from R™ x R x R™ into R, and ) is a positive constant.

We assume that the functions £, f, and g satisfy the following hypotheses:

H1 The function £ : R® x R x R™ — R is continuous, and satisfies the
following estimate:

£y, z,u) = €y, 2, w)l < Aelly =y + |2 = 2']), ey, 2, u)| < My,

for some Ag, My > 0, and for all ¥,y € R®, 2,2/ € R, u e U.
H2 The function f : R® x R? x R™ — R™ is of class C!, and satisfies the
following estimate:
|f(y,2,u) - f(yla zlau)l s Af(ly - yll + Jg= z/‘)’ |f(y,z,u)| < My,
for some Ag, My > 0, and for all y,y' € R®, z,2/ € RY, ue U.
H3 The function g : R® — R9 is Lipschitz continuous, with constant Ay > 0.
H4 The g x ¢ matrix ¢'(y)f.(y, 2, u) is invertible for all (y,2z,u) € Rx RIx U,
and we have:

|19/ o207 | < M,
V(Ay1, Ays) € R™ x R, [g"(y)(Ay1, Aya)| < M8, |Ayi||Aya,

VAz € RY, |f(y,2,u)(Az, Az)| < M} |Azf?.
for some positive constants M, MJ, and M, and for every (y,z,u) €
R* x R x U.

Hypotheses H1 to H3 are natural extensions of those classically used when
studying the Hamilton-Jacobi-Bellman (HJB) equation for the value function
of an optimal control problem. Computing the time derivative of the algebraic
constraint along a trajectory, we obtain what is called the hidden constraint

0= %g(yx(t)) = g’(yz(t))f(yz(t)’ 22 (1), u(t)).

Thanks to hypothesis H4, the implicit function theorem implies that (at least
locally) we can extract the algebraic variable z,(t) from this equation or, equiv-
alently, that we can obtain #,(t) by differentiating a second time. This kind of
algebralc differential system is sald to be of 1ndex 2. For the sake of s1mphc1ty,

S . Y
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and Lipschitz continuous function Z from R™ x R™ into RY such that for all
(y,u) € R* x R™, z = Z(y,u) is the unique solution of the hidden constraint:

0=g'(y)f(y,2,u). (3)

If the function Z(y,u) can be computed numerically, then we can elimi-
nate the algebraic variable and reduce the problem to the optimal control of an
ordinary differential equation. However, it often occurs that f and g are avail-
able, but not their derivatives. It is still possible then to integrate numerically
the state equation. The main contribution of this paper is to state a numer-
ical scheme for solving the HJB equation associated with the optimal control
problem.

3. Study of the continuous problem

Since our hypotheses allow to express the algebraic variable z(t) as a Lipschitz
function Z(y(t),u(t)), it is convenient to denote the “reduced” dynamics and
running cost as

F(y,u) := f(ya Z(ya ’u-),u); L(y, u) S f(y, Z(y,u),u). (4)

We can formulate the continuous optimal control problem as follows:

Vizg)= inf /:, L(yz(t),u(t))e ** dt for z € R", (5)

where y.(t) is solution of the ordinary differential equation

{gx(:) = F(y.(t),u(t)) ¢>0,

y=(0) = z. (6)

Since the dynamics and running cost functions are Lipschitz and bounded, it
is well known that the state equation has a unique solution in the space of
absolutely continuous functions, and that the value function is finite and Holder
continuous as the next lemma tells. Let Ag be defined by

f —_
A= sup{“F(x ,u2 F(:c,u)l[; o' #1; u€E U} ;
|z’ — ||
LEMMA 3.1 The value function is bounded. In eddition, let v be such that
d=1 i A3 N
T (7
o if A<A,.

Then there exist A, > 0, and e, > 0 such that, for all z and z' satisfying
|z’ — z| < e, the following holds:

[V(z) = V(@')| < Alz — 2'|". (8)
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Consider the Hamilton-Jacobi-Bellman (HJB) equation

max (AW (¢) = F(z,u) - D;W(z) - Lz, u)} =0 Va € R", (9)
. d : ;
Here D, = [ —,-+- ,=—— | and “” denotes the inner product in R".
0z Oxn

For convenience, we recall here the definition of viscosity solution, see Cran-
dall and Lions (1983).

DEFINITION 3.1 A continuous function W on R™ is called a viscosity solution
of (9) if, for every ¢ € C*(R™), the following holds:
(i) If zy is a local mazimum point of W — @, then

max {A\W(z1) — F(z1,u) - Dzp(z1) — L(z1,u)} < 0.

(ii) If z is a local minimum point of W — ¢, then

max {AW (z2) - F(z,1) - Dap(az) = L{zz,u)} 2 0.

REMARK 3.1 In fact, the boundedness and Lipschitz continuity of F' and L
imply (see, e.g., Barles, 1994) that the value function V is the unique bounded
and uniformly continuous viscosity solution of the HJB equation.

4. Numerical analysis

Let us briefly discuss two standard first-order schemes for solving the state
equation. In each of these schemes, the control variable is supposed to be
constant during the time step h > 0. Since we consider one step methods, it is
sufficient to state the formula for computing the state after the first step. So,
let us fix ug € Uyq and an initial condition z € R™. The two schemes are

{ y::‘ =z + hf(z, z;‘,ug)
0= g'(z)f(z, 2%, uo)

on the one hand, and

h _ h
(it o

on the other hand. The first scheme is of explicit type while the second one is
of implicit type.

In each of these schemes, one has to solve a system of nonlinear equations.
In practice, this will mean using a variant of Newton’s method, in which the
Jacobian may be approximated using finite differences. The functions defining
the equations to be solved, however, have to be computed with a good accuracy.

el I

(10)
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precise evaluation of f and g, whereas the second needs only to evaluate f and
g- In other words, if only g is available and not its derivative, then the second
scheme can be implemented, while the first cannot.

First scheme. In the first scheme we have that
vy =z + hf(z, Z(z,u0), uo)- (12)

THEOREM 4.1 Let ug € R™,x, € R™ be given and consider w = Z(z,up) be the
solution of

g',(ﬂ:)f(ﬂ?, wruﬂ) = 0.

For all h > 0, there ezists a unique solution of (10). Moreover, the functions
z — (yh, 21), that map z to the unique solution of (10) are Lipschitz continuous
functions.

Proof. The proof is classical and therefore omitted. [ |

Second scheme. We now turn to the study of the second scheme.

THEOREM 4.2 (Existence and uniqueness of the solution) Let ug € R™ and
z € R" be given and consider w = Z(z,up) the solution of

¢'(z)f(z,w,u0) = 0.

There ezist hg > 0, € > 0 and n > 0, all independent of x such that for all
0 < h < hg the system (11) has a unique solution (y,z") in the set B(z, §) x
B(w, %).

Proof. The proof follows closely the ideas of Hairer et al. (1980). Consider the
system

{ y(T] = a:+hf(:.:,z('r),ug)+h(1‘~—1)f(:c,w,u0) (13)
0 = g(y(7)) — g(=) ’

For 7 = 1, (13) is equivalent to (11), while for 7 = 0, it has the obvious solution
y = z and z = w. Differentiating with respect to 7, we get

{ 4 = hf.(z,2,u0)% + hf(z, w,uo) (14)
0= g'(y)f:(z, 2, u0)2 + ¢'(y) f (2, w,u0)

Now, due to H4, it is easily seen that ¢'(y)f:(z, 2, uo) is invertible for y in
B(z, §) with e = (M.Mg,)™" and that

=l EY wiema 10d0AE fe o wW=11 & N
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Within B(z, §), (14) is equivalent to the differential system

{ y = hP(.T, y,z)f(:v,w, UO)
=~ (g' (1) f=(z,2,%)) " ¢'(v) f(z,0,u0)
where P(z,y,z) is the projection I — f,(z,z,up) (g'(y)fz(m,z,uo))—lg’(y) and

with initial conditions y(0) = z and 2(0) = w. This system has a unique solution
which satisfies

lur) - = / " (Q)de| < Th(1+ 28, MA,)M;,
l2(r) — vl < 2M |g'(2) F(z, 0, u0)
N ——

=0
+ [ oo+ tutr) ~ D)o, 00) ) - x)dtl
< MM, Mjly(r) - 2,

and thus remains in B(z, §) x B(z, ) for 7 < 1, provided h < hg, where

p— & i
i =L (2(1 +2A;MA,)M;’ aMMg,M;(1+ 2A;MA, )Mf) '

In order to prove uniqueness, we consider another solution (y,z) in B(z, §) X
B(w, %) of (11). Writing Ay = y—y, Az = Z—z and Af = f(z,7,u0) —
f(z,z,up), we then have

=9(y) - 9(v)

9'(y)Ay + BY(y, )(Ay, Ay)

hy'(y) f:(z, 2, u0) Bz + hy'(y) B (z, 2, 2)(Az, Az) + BY(y,§)(Ay, Ay),

where
BY(y,y)(Ay, Ay) = /O 1(1 —t)g" (y + tAy)(Ay, Ay)dt
and
B, 5, 9)(Az, Bd) = /0 (L= ) ur(e, 2 + tA7 w0) (A2, Ac)db,

It follows that

Az = (_g’(y)fz(x’ 2, UO))_I(gI(y)Bf(xa Z, E)(AZ, Az)
+hB(y,y)(Af, Af)).

We consequently get the estimate
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Now, provided 7 is sufficiently small, the constant M(A,M7, + HA?-ng)n is
smaller than 1 and we necessarily have Az = 0. The fact that Ay = 0 follows
straightforwardly. [ |

THEOREM 4.3 For any up € R™ fized and for 0 < h < ho/2 the functions
- y" and z — 2" (15)

that map z to the unique solution of (11) lying in B(z, 5) x B(Z(z,uo), %) are
Lipschitz continuous function.

Proof. Given = and Z in R", let I'(7) = 7z 4 (1 — 7)% and consider the system

y=1(r)+ hf(I(7), z,u0)
{ 0=g(y) — 9(I'(1)) ’ (16)

whose solution is (y*,2%) for 7 = 1 and (y2,2%) for 7 = 0. As in previous
theorem, differentiation with respect to 7 leads to

{ y=(z-%)+hfy(L,z,u0)(z — Z) + hf.(T, z,u0)2
0=7%(9'(y) = 9'(T) + hg'(¥) fy(T z,u0)) (z — &) + ¢'(y) f(L', 2, u0) 2

with initial conditions y(0) = yz and z(0) = z&. Within the set

€ = Urepo)B (F(T)‘ %) ’

the previous system is equivalent to the differential equation

{ y=(z—Z)+ hfy(l,z,u0)(z — ) + hf.(T, 2, u)2
2=~(g'(y) f=(T, 2,u0)) (5 (9'(¥) = 9'(D) +hg'(v) fy(T, 2, u0)) (2~ 7))

with the same initial conditions as before. It has a unique solution for 7 < 7*
which satisfies

ly(r) = T(r)| < hM; < 5
and thus can be extended up to 7 = 1. Now, we have
1
(1) - 241 = | [ (0
< 2M (M, My + AgAg)lz — 2.

1 y ~;
<2M (Eng Til[lopl] ly - T| + Agﬁf) |z - |,

From this estimate, we then get
|2(1) = Z(z,u0)| = |2(1) — 23 + 23 — Z(Z,u0) + Z(Z, u0) — Z(2, uo)|
< |2M(Mg, My + AA) [o - | + T + Liz — 3]
K
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It follows that for |z — Z| < zhgy, |2(1) = Z(2,u0)| < 3, so that 2(1) = b
and
|2k = 2&| < K|z - ).
Now, if |z — Z| > g5, we have
l2g — 22| < |2 = Z(2,u0) + Z(2,u0) = Z(Z, u0) + Z(%,w0) — 73|
< n+ Liz - 7|
< 4K+ L)|lz —Z|+ Lz — 7|
< (4K 4+ 5L)|z - 7).
h

The function z — 2 is consequently Lipschitz continuous and so is z +— y” in
an obvious manner. |

5. Analysis of the discrete-time optimal control problem
5.1. Case of reduction to the standard framework

Let h be a positive number, and consider the value function:

Vi(@)= inf Ju(yz,zzun); 2 E€RY, (17)
u€ ad

where U :d denotes the subset of U,q consisting of all controls uh which take
constant values u* on each interval [kh, (k + 1)h[, k € N, (y*,2%) denotes the
sequence determined by the recursion

y* 1 = ok 4 AP(y*,u*) £=0,1,2,...,
zf = Z(y*,u*) k=0,1,2,..., (18)
y° =z,

and the cost function Jj is given by:

Ju(y,u) = h Y (14 M)~ FHD Ly, ub).

=0
Then we have that the following dynamic principle holds:

rﬁlgg{(l + AV (z) - Vi (z + hF(z,u)) — h L(z,u)} = 0. (19)

As in Capuzzo Dolcetta and Ishii (1984), we prove that if h < 1/X then
(19) has a unique bounded continuous solution V;! and that {V;'} converges
locally uniformly in R", as h tends to 0, to the unique bounded uniformly
continuous viscosity solution of (9). Equation (19) stands for an approximate
problem of (9), and the following theorem follows from Capuzzo Dolcetta and
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THEOREM 5.1 Assume that HI-H3 hold. Let V and V! be the solutions of (9)
and (19), respectively. Let <y € |0,1] be a Hélder exponent of V.. Then

sup |V(2) - Vii(2)] < Ch/2, (20)
zERM
for all h small enough, where C > 0 is independent of h.

5.2. Second scheme

In this section we discuss a discrete time optimal control problem associated
with the second scheme (11).

Let h be a positive number, and consider the value function:
Vi(e) = inf Ja(yk,z,un); @ €R", (21)
ueUh,
where Ui‘d denotes the subset of U,q consisting of all controls uj, which take
constant values u* on each interval [kh,(k + 1)A][, for all k € N, and (y!, z})
denotes the sequence determined by the recursion

yk+1 =y"'+hf(y“,z"‘.uk) =012 ...,

Y =2 (22)
9y ) —9(y*) =0 k=0,1,2,....
Here z* can be expressed, as we have seen, as a function of ¥* and »*, that we

denote Z(y*,u*), and the cost function Jj, is given by:

In(yl, 28 un) = h Y (1+ M)~ R0y 25 o),
k=0

Observe that for every (z,u) € R® x R™, z = Z(z,u) is the solution of the
nonlinear system

g(I + hf(..."':., z,u)) R g(z) =0,

then
Z(z,y) = Z(z,u) + O(h), (23)
and consequently
f(@, 2z, u),u) — f(z, Z(z,u),u) = O(h); (24)
Uz, Z(z,u),u) — L(z, Z(z,u),u) = O(h). (25)

So, it is convenient to consider the following abstract framework: consider
two functions F* : R® x R™ — R™ and L" : R® x R™ — R and satisfying

F!(z,u) — F(z,u) = O(h); (26)
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The state equation and cost function are, respectively,

k41 _ ok higk 2k -
{yo y* + hFR (5 uk) k=0,1,2,..., -
y =
Va(z) = inf hY (1 + M)~ ®FDLAGE o). (29)
welUl, k=0
The corresponding dynamic principle is
max {(1 + AR)Vi(2) = Va(z + hF"(z,u)) = hL*(z, u]} =0 (30)
uel
LEMMA 5.1 The solution of (30) satisfies
[Va()| € Mo, [Va(2) - Va(a')| < Aoz — /| (31)

for all z,z' € R", h €]0,1/)[, for some M, > 0 independent of h, and where
and A, > 0 are as in Lemma 3.1.

The following theorem holds.

THEOREM 5.2 Assume that Hi-H3 hold. Let V and Vi, be the solutions of (9)
and (30), respectively. Let v €)0,1[ be a Holder exponent of V. Then

sup |V (z) — i}h(x)] < Ch/?, (32)
zeR"

for all h €]0,1/)[, where C > 0 is independent of h.

Proof. We adapt to our case the proof from Capuzzo Dolcetta and Ishii (1984).
Given 0 < e < 1, set

Be(z) := —e~?|z|> for z € R". (33)
Define
0(z,y) = Va(z) = V(y) + Be(z —y) for (z,y) € R" x R".

Let a € (0,1). Since V and V, are bounded on R, there exists (z1,9;) in R
such that

¢(z1,51) > supp — a.
Choose £ € C§°(R?™) so that

~f N 4 N s s o I sl - o
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and set

¥(z,y) = o(z,y) + af(z,y) for (z,y) € R*".

Clearly, 9 attains its maximum value at some point (z,,%,) in the support of
£. That is,

¥(zo0,%0) 2 Y(z,y)  for all (z,y) € R*™. (34)

In particular, y — —9(x,,y) attains its minimum at y,. Therefore, by the
definition of a viscosity solution of (9), there exists u* € U such that

’\V(yo) + F(yo:u')‘ (Dﬁs(fo = yo) - C‘-'Dyg(«“:myo)) o L(ym 'u‘) > 0. (35)
Using (34) with 2 = z + hF"(zo,u*) and y = y,, we obtain

V(o + RF"(z0,u*)) — Vi(zo) < Be(z0 — y0) + a€(z0, %0)
— Be(z0 + hF"(z0,u*) — y0) — aé(zo + hF"(z0,u*)).

Adding (30) to the previous inequality and using the definitions and properties
of B. and &, we get

MiVi(20) < AL (0, u*) + Be (o — Yo) + € (2o, Yo)

— Be(zo + hF"(z0,u*) — y0) — é(zo + hF" (0, u*))

< hLM=o,u*) — hfL(zo — yo) F* (o, u”) — €7 2h2|F*(zo, u*) ?
+ ah|F* (2o, u*)|.

Dividing by h and subtracting (35) leads to

i;h(xo) = V(yo) S Lh(xfhut) = L(yg,u') (36)
+ﬁ;($0 = yU)(F(yO: ll‘) - ‘Fk(xoa ‘b‘-*)) (37)
+C[g+a]. (38)

Combining this inequality with the estimates
L"(z0,u") = L(yo, u*) = L"(z0,u") = L(zo, u*) (39)
+ L(zo,u*) — L(yo, u") (40)
= O(h) + O(|zo — yol), (41)
F*(zo,u") = F(yo,u")) = O(h) + O(|zo = yol), (42)

we obtain, whenever € < 1,

-_— 2 -—
Vil \—ViuN< (O [-H:_ — | 2 _y"i +h|x° ﬂy°| L E +a] . (43)
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Using ab < 1(a? + %), we get
1.2 2
hlzo = yo| < §(h + 2o = ¥ol%)
as well as

T, — 1 To — Yol
|$o‘_yai=5| 0€y0|£_2_(52+i o yol )

g2

Then, by (43), and for e <1 and h < 1, and taking @ = O(h), we obtain

|Q

‘7};(.'50) = V(y) < (lxo - yol2 + h} . (44)

b3

£

Observe that if we choose z = y = z,, in (34), we obtain first that |zo —yo| —
0; using the fact that V has Holder constant -+, we get, using a < 1,

1
E_glxo i yolz < K}xa - yOIT + a’xo - yol < leo - yolT'
Equivalently,
Ixa_yalstz_};a (45)

with K independent on e and h. Thus, from (36) and 1(45)
Vi(@o) = V(o) < K [54 " Ehf] il [srl + %] |
£

Choosing € = hZ=1/4 we are lead to:

Talzo) = V(uo) < K(W12). (46)
From (34), we finally obtain:

Va(z) — V(z) < KR/? for all z € R™. (47)

It remains to prove the opposite inequality. This can be done in a similar
manner, by setting

é(z,y) = V(z) = Va(y) + Be(z — ).

Again, given a € (0,1), there exists (2, y2) such that @(z3,y2) > sup ¢ —, and
hence, given £ € C°(R?") such that &(z2,72) = 1,0 < £ < 1, and |[DE| < 1, and
setting ¥(z,y) = ¢(z,y) +af(z,y) for (z,y) € R?", we have that 7 attains its
maximum value at some point (Z,, J,) in the support of &:

7171".’?:".?_}") 5 hla oY  far all G o) = Ren faon
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Since z — 9(z, §,) attains its maximum at Z,, we have that, for each u € U,

AV (Zo) + F(Zo,u). (Be(Zo — Fo) + @Dy&(Zo, 5o)) — L(Fo,u) 0. (49)
On the other hand, (19) implies that, for some @ € U,

(1 + M)Vh(@o) = Va(Go + hF™ (@0, ) — hL*(§o, @) = 0. (50)
Using (34) with z = 7, and y = §, + hF*(Z,, @), we obtain

Va(@o + hF™ @0, ) = Va(Ho) > —Be(Fo — To) — (%o, o)

+ Be(Zo + hF™ (o, 1) — §o) + a€(Fo + hF"(Zo, B), Jo)-
Adding equality (50), dividing by h and then subtracting (49), we obtain

Vileo) = V(i) 2 € 170 1ol + Bl 4 % o). (51)

The end of the proof parallels the one for proving (47). |

6. Convergence of finite difference schemes

Consider the following finite difference scheme. Let 61,... ,8, be the (positive)
space steps. With j € Z" the point z; € R" is associated with coordinates
ji6;. Denote by ey,...,e, the natural basis of R®. With ¢ € R", whose each
coordinate is either 0 or 1, we associate the spatial finite difference which, for
the ¢th component, is on the right if ¢; = 1, and on the left elsewhere:

Vitce; — Vs =
(quj)i - Jtsie: 6‘J+(<, 1)e; ) (52)

With this vector ¢ is also associated a subset of U:

Ui(z) :={u € U; Fi(z,u) > 0if ; =1, Fi(z,u) <0 otherwise}.
A standard finite differences numerical scheme for computing the value function
is

AU+ max sup (—L(zj,u)— D°;- F(zj,u)) =0, jeZn. (53)
S uwelU.(z)

This is the classical upwind scheme, where for each component, the spatial
finite difference is on the right if the corresponding component of dynamics
is nonnegative, and on the left otherwise. Consider now the case when the

available data are the functions F" and L* satisfying (26)-(27). Introducing
the “fictive” time step h, we can approximate (53) in the following way:

Xo; +max sup (-LM(zj,u) - DT Fh(zjw) =0,  j€Z" (54)
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Note that, in the case of the second scheme (11), h can be interpreted as
a time step. In our abstract framework, however, the parameter h is just a
measure of the quality of approximation of F and L. In particular, there is no
stability condition linking h with the space steps.

THEOREM 6.1 Assume that H1-H3 hold. Let V be the solution of (9), let (v;)
be the solution of the finite difference scheme (54), and let V5 be the piecewise
linear function on R™ such that V(z;) = v;.

Let v €)0, 1] be a Hélder exponent of V. Then

/2
Suflt) [V(z) — Vas(z)| < C (h. + Z 6‘-) ; (55)
TER" 3

for all (h,6) € Rt x (R%)", where C > 0 is independent of (h, 6).

Proof. Denote by Rf the spatial grid, i.e. points of the form (81k1,... ,6nkn),
with k1,... ,k, in Z". Given 0 < £ < 1, set

Be(z) := —e"%|z|*> for z € R™. (56)
Define
o(z,y) := Vas(z) = V(y) + Be(z —y) for (z,y) € R§ x R".

Let a € (0,1). Since V and Vjs are bounded on R" and R}, respectively, there
exists (z1,1) in R} x R" such that

¢(z1,91) > supp —a.
Choose ¢ € C§°(R?™) so that
§(z,y) =1, 0<&<, [DE<1,
and set
P(z,y) = ¢(z,y) + of(z,y) for (z,y) € Rf x R™.

Clearly, ¥ attains its maximum value over R} x R™ at some point (z,,¥,) in the
support of £. That is,

Y(@o,90) 2 Y(z,y) for all (z,y) € RE x R™ (57)

In particular, y — —v(z,,y) attains its minimum at y,. Therefore, by the
definition of a viscosity solution of (9), there exists u* € U such that

AY/ A ne N 0 Y n, L EN IiTVYO T \ oas s - e
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Since 7z, belongs to R}, there exists j € Z" such that z, = z;. Let ¢ € R" be
such that

=1 if F"(zg,u')i >0, 0 otherwise.
Then

M < LM(xj,u) + Z i’%—_wﬁ}h(m_f,u)+ Z H#F"(z_,,u)

ii=1 ii6i=0
(59)
Using (57) with z = To + 5:‘6;‘ and Y = Yo, WE obtain
Vjde, — V; < Be(o — yo) + aé(zo0,y0) — Be(zo * die; — yo) — aé(zo + bi€;)
< —BL(zo — yo)(£bie;) — €767 + asb;.

If F*(z;,u*) > 0, multiply this inequality (for + = +)) by F}*(z;,u*)/6;; oth-
erwise multiply this inequality (for £ = —)) by —F/*(z;,u*)/6;; adding these
inequalities to (59), we obtain

M < LMzj,u) = BL(zo — yo) F* (zj,u) — €72 ) 8 + nav. (60)
=1

Subtracting (58) from the previous inequality, we obtain

Avj = V(90)) < (L*(mo,u*) — L(yo, u*))
za

+ BL(zo — yo)(F(yo, u*) — F*(zo,u*)) + 4= + O(a).

Combining this inequality with the estimates
L*(zo,u*) = L(yo,u*) = L*(z0,u*) - L(zo,u") (61)
+ L(zo, u*) — L(yo, v*) (62)
= O(k) + O(|zo — o)), (63)
F*(0,u") = F(yo,u")) = O(h) + O(|z0 — ol), (64)

and taking a = O(h), we obtain,

o © o o ,'6£
Vhﬁ(mo)_v(yo)sc |mo"yo|+ix Egy IE E y EEz +h’] (65}

From ab < §(a® + b?) we deduce that
hlz, — yok < (h’2 +|zo — ynlz]

as well as

i.']’?,. o 'b'nl 1 .0 |2:r| " ,ur}|2‘
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Then, by (43), and for e <1 and h < 1, we obtain

0 02 h+ '51'
Via(oo) - Vign) < 0 [Bomtel B2l 1], (66)

Choosing z = y = =z, in (57) we get |zo — yo| — 0; using the fact that V has
Holder constant -y, and using o < 1, obtains

1
5_2'!939 - yofz < Klf’f'o e yol., -+ alxo = 'ya‘ < lea = yolﬁr-
This is equivalent to
|$o = yol < KE-'&:?;) (67)

where K is independent of €, h, and (§;). Thus, from (66) and (67)
Vis(zo) = V(ge) < K [ETL st 5‘] s [s% Tas? L 5‘] .

Choosing € = (h+ X, 6:)* %, we lead to:

/2
Vhb’(zo) = V(yo) < K ((h = Z&) ) . {68)

From (34), we finally obtain:

/2
Vas(z) = V(z) < K ((h+25,-) ) for all z € R}.

Since « €]0, 1| is arbitrary, we thus have

/2
Vis(z) — V(z) < K (h + Za.-) for all z € R}.
From the definition of V5 and the Holder continuity of V, we conclude that
v/2
Vis(z) - V(z) < K (h + ZJ,-) for all z € R™. (69)
It remains to prove the converse inequality. This can be done in a similar

manner, by setting @ : R® x R} — R defined by

-— N TYri._.N Yr £ N . o f
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Again, given a € (0,1), there exists (z2,y2) such that ¢(z2,y2) > supp — a,
and hence, given £ € C§°(R?) such that &(Z3,72) = 1,0 < £ < 1, and [DE| < 1,
and setting ¥(z,y) = @(z,y) + aé(z,y) for (z,y) € R“ x R2, we have that 9
attains its maximum value at some point (Z,,%,) in the support of &:

Y(Zo, o) > Y(z,y) for all (z,y) € R® x RE. (70)
Since z — 1!-)(3:, fo) attains its maximum at Zo, we have that, for each u € U,
V(Z,) + F(Zo,u). (BL(Zo — Fo) + aDyé(Zo,¥o)) — L(Zo,u) < 0. (71)

On the other hand, let j € Z" such that y, = z; € R. Then the equality
(54) implies that, for some @ € U,

v e - Uy - =
MWVas(yo) = L*(z;, 8) + ), LX4—LF}(z;,8)

iigi=1 6
Vi = Yj—e; phy -
+ Y LR ). (72)
=0
The end of the proof parallels the one for (69). @

REMARK 6.1 If we choose a “fictive” time step h = O(}; 6;), then the error
estimate (55) is

sup |V(z) - Vis(2)| < CY 6%, (73)

7. Numerical test

Consider a system described by the following differential-algebraic equation

Tee(t) = yse + sin(zs¢), Toe(s) = &1,
ysﬁ(t) = —Ts¢ + COS(Z,{) + u, Yse (8) 2= EZ! (74)
9(zsg, ysg) = € + 3,

where (4¢,Ys¢, zs¢) denotes the state variable, and u is the control variable.
The function g is defined by g(z,y) = 2% + y2, for every (z,y) € R2. It is clear
that the system (74) is of index 2 and that its associated hidden equation is the
following;:
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For every s € [0,1] and every € = (£1,€;) € R?, we define a control problem
(Psf) by:
1

: 1
MmJ(*‘”“SE: Yse s Zs€s U) = / 5 (5‘:35 + uz) dt

(Zs¢, Yse, 2, u) satisfies (§74), and
u(t) € [0,1] a.e t € [0,1].

We are interested in the computation of the value function for s € [0,1] and
for ¢ in the bounded domain [~1,1]%. In order to avoid artificial boundary
conditions, we use the classical method that consists in computing the value
function on a big domain containing [~1,1]? and using the fact that the value
function is known on R? when s = 1.

By this simple test, we remark that the value functions computed by the
first scheme and the second one are very close to each other (see Fig. 1).

In Figs. 2-3, we represent the optimal trajectories starting at s = 0 with the
initial condition £ = (0.3,0.2). These trajectories seem to be very close. How-
ever, the trajectory computed by the scheme 1 satisfies the “hidden” constraint
with precision of 10716 but satisfies the algebraic constraint only with preci-
sion of 2.4 x 1072, On the contrary, the trajectory computed with the second
scheme, satisfies the hidden constraint with precision of 2.9 x 10~2 and satisfies
the algebraic constraint with precision of 107!¢. Note that, in view of the two
algorithms, these results are not surprising. To conclude, it is important to note
that the second scheme has the advantage of not needing the explicit knowledge
of the derivative of the function g.
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