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Forecast model for real time reliability of storage system 
based on periodic inspection and maintenance data

Model do prognozowania niezawodności systemu magazynowania 
w czasie rzeczywistym w oparciu o dane z przeglądów okresowych 

oraz dane eksploatacyjne

In recent years, storage reliability has attracted much attention for increasing reliability requirement. In this paper, forecast 
models for real-time reliability of storage system under periodic inspection and maintenance are presented, which is based on the 
theories of reliability physics and exponential distribution. The models are developed under two newly-defined imperfect repair 
modes, i.e., Improved As Bad As Old (I-ABAO) and Improved As Good As New (I-AGAN). A completion method for censored life 
data is also proposed by averaging the residual lifetime. According to the complete and censored lifetime data, parameters in the 
models are estimated by applying maximum likelihood estimation method and iterative method respectively. A numerical example 
of a storage system is given to verify the feasibility of the proposed completion method and the effectiveness of the two models.

Keywords: storage reliability, real-time reliability, periodic inspection and maintenance, censored data.

W ostatnich latach wiele uwagi poświęcono tematyce niezawodności magazynowania w odniesieniu do zwiększania wymogu nie-
zawodności. W prezentowanym artykule, przedstawiono modele do prognozowania w czasie rzeczywistym niezawodności systemu 
magazynowania podlegającego przeglądom okresowym i obsłudze. Modele oparto na teoriach z zakresu fizyki niezawodności 
oraz na rozkładzie wykładniczym. Proponowane modele opracowano dla dwóch nowo zdefiniowanych opcji niepełnej odnowy, t.j. 
Improved-As Bad As Old (Jak Tuż Przed Uszkodzeniem – Wersja Udoskonalona) oraz Improved-As Good As New (Jak Fabrycznie 
Nowy – Wersja Udoskonalona). Zaproponowano także metodę uzupełniania danych cenzurowanych (uciętych) dotyczących trwa-
łości polegającą na uśrednianiu trwałości resztkowej. Zgodnie z pełnymi i cenzurowanymi danymi trwałościowymi, parametry w 
proponowanych modelach ocenia się, odpowiednio, z zastosowaniem estymacji metodą największej wiarygodności oraz metody 
iteracyjnej. Poprawność przedstawionej metody uzupełniania oraz efektywność proponowanych dwóch modeli zweryfikowano na 
podstawie numerycznego przykładu systemu magazynowania.

Słowa kluczowe: niezawodność magazynowania, niezawodność w czasie rzeczywistym, okresowe przeglądy i 
obsługa, dane cenzurowane.

1. Introduction

In engineering practice, there exit such kinds of systems. They are 
kept in storage state for most of their lifetime, but must keep high mis-
sion reliability and be ready for operation whenever needed. Strategic 
missile, spare parts for nuclear power plant, and fire protection system 
are typical examples of such systems. Periodic testing, replacement 
and other maintenance measures are necessary to avoid or reduce the 
occurrence of failure [6, 9, 12]. 

In the past decades, storage reliability has attracted much atten-
tion from both academia and engineering field. Merren studied the 
periodic test problem of electronic equipment in storage, and an al-
gorithm for computing the reliability was developed based on test 
data [8]. Aneziris presented a method for calculating the dynamic reli-
ability of safety systems, which was based on the theory of Markov 
chain [2]. Ref. [4] proposed an availability model for storage products 
under periodic inspection, but they ignored the initial failure. Zhao 

and Xie studied the problem of potential storage reliability estimation 
with initial storage failure [13]. Zhang and Zhao established a stor-
age reliability model under periodic inspection [14]. Ref. [15] studied 
the storage reliability of missile-engine with Bayesian approach. Yang 
used stochastic process method to describe the degradation process 
of the components with multi-performance parameters, and proposed 
a storage reliability evaluation model [11]. Ref. [13] introduced an 
approach to evaluate the storage reliability of engine control circuit 
module. 

Up to now, most existing research mainly concentrated on the data 
analysis methods for the components of a system. Real-time reliability 
estimation of products in storage on the system level has not received 
sufficient attention. Most studies assume the system is in perfect ini-
tial state and there is not much effort placed on empirical study based 
on actual storage reliability data. As for repair efficiency, two basic 
assumptions are known As Bad As Old (ABAO) and As Good As 
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New (AGAN). However, these two extreme cases seldom happen in 
most practical systems [7]. More reasonable repair models need to be 
developed to get a closer description of the real situation.

In this paper, real-time reliability evaluation models are estab-
lished based on periodic inspection data, and two newly-defined 
imperfect repair modes are considered, i.e., Improved-ABAO and 
Improved-AGAN. A new completion method is also proposed to con-
vert censored life data into complete data. Based on complete and 
censored lifetime data, the parameters in the models are estimated 
with maximum likelihood estimation method and iterative method, 
respectively. A numerical example is given to illustrate the models 
and method.

2. Reliability model for storage system

Due to different reasons, not all the storage systems are shipped 
out of the factory with reliability testing. Thus the initial use reliability 
of the system might not be 1. 

Let A indicate the event “the storage system is qualified at t=0”, 
denote T as the lifetime of the storage system. The real-time reliability 
at time t(t≥0) can be expressed as:

	 0( ) ( , ) ( | ) ( ) ( )sR t p T t A p T t A p A R R t= > = > =  	 (1)

where R0 is the inherent reliability of a storage system, R0=p(A); 
Rs(t)=p(T > t | A) is the conditional reliability of the system, which 
changes with storage time and Rs(0)=1.  Therefore, the system reli-
ability can be represented as
	 R t R R tS( ; ) ( ; ),θ θ θ= ∈0 Θ  	 (2)

where Θ is a measurable parameter set.
In order to keep high mission reliability, periodic inspection and 

maintenance are needed. Based on the difference of maintenance, two 
types of forecast models for real-time reliability are given as follows.

2.1.	 Reliability forecast model under I-AGAN 

Assume that the storage system is put into use at t=0 and it is 
inspected at intervals of time τ(τ≥0). If partial failure or aging oc-
curs, the maintenance is carried out. After x(0<x<τ) time maintenance, 
the system is restored and keeps on storing. When the maintenance 
is perfect and leaves the system as if it were new, we call it repair 
under AGAN[7]. In engineering practice, however, maintenance can 
increase system reliability but the failure rate usually shows an in-
creasing tendency owing to the degradation of material strength. Tak-
ing account of this, we propose a new repair mode called Improved-
AGAN (I-AGAN) (See Fig. 1).

Under I-AGAN, three assumptions are made as below: (1) The 
system is stored under natural conditions, and the lifetime t obeys 
exponential distribution. (2) In the initial time, the system reliability 
is R(0) = R0 ≤ 1 and lifetime t obeys exponential distribution with 
parameter θ0. After the kth maintenance, lifetime obeys exponential 

distribution with parameter θk, and θ0 ≥ θ1 ≥ θ2 ≥ … ≥ θk-1 ≥ θk. (3)
The inspection interval is τ. The maintenance time xk (k = 1, 2, …) is 
a stochastic variable that varies with failure.
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where k=1, 2, 3, …, n; n is times of maintenance. 
Denote F(t) as the failure distribution function of the system at t, 

and F(t)=1-R(t). Hence, F(t) obeys the following distribution:
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where [∙] represents rounding down.
Based on the characteristic of exponential distribution, in non-

maintenance period R(t) can be calculated:
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Suppose λi (i=1, 2, …, k, …) is the system failure rate after the ith 
maintenance. As λi = 1/θi, obviously, λ0 ≤ λ1 ≤ λ2  ≤…≤ λk-1 ≤ λk. Ac-
cording to the reliability physics and engineering practice, after the kth 
maintenance the failure rate satisfies the following equation:
	 λ λ βk k k n= =0 1 2exp( ), , , , ,	 (5)

where β(β>0) is the degradation factor. It can also be rewritten as 
θ θ βk k= −0 exp( ) , k = 1, 2, …, n. 

From Eqs. (4), (5), the real-time reliability at time t is: 
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Based on the maintenance strategy, it can be obtained that:
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From Eq. (6), it can be concluded that the system real-time relia-

bility before the kth maintenance time t k xi
i

k
= +

=

−
∑τ

1

1
 is:

	 R t R e k nk
k− = − =( ) exp( ), , , ,0 0 1 2λ τβ  	  (8)

2.2.	 Reliability forecast model under I-ABAO

When the maintenance leaves the system in the same state as it was 
before failure, we call it repair under ABAO[7]. In practice, however, 
maintenance may leave the system reliability higher than it was before 
failure but lower than its initial state R0. Additionally, material strength 
degradation causes failure rate to increase. Taking account of this, we 

Fig. 1  Reliability change of storage system under I-AGAN
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propose another imperfect repair mode called Improved-ABAO (I-
ABAO), with the same assumptions in Section 2.1 (See Fig. 2).

According to reliability characteristics, we can divide a storage 
system into two subsystems. Subsystem 1 requires regular inspection 
and maintenance with an invariable or increasing failure rate. Subsys-
tem 2 has a high reliability and does not require regular inspection and 
maintenance, but aging phenomenon may occur.

Under I-ABAO, after each maintenance the system reliability 
Rs(t) cannot be restored to the initial reliability, that is: 
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Subsystem 2 is composed of mechanical and electronic parts, 
which has usually undergone ageing screening tests, and the infancy 
failures have been eliminated. Basically, it is in the random failure 
period, so the system reliability is assumed to decrease exponentially, 
which is expressed as[1]: 
	 R t ts2( ) exp( )= −δ  	 (10)

where δ is the degradation coefficient. From Eq. (2), it can be con-
cluded that the system reliability at time t is:
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3. Completion of censored data

Regular inspection is necessary for the storage system, but the 
failures are seldom found exactly at the inspection time. So it is dif-
ficult to obtain complete data, and the field lifetime data are mostly 
censored. If the censored data are simply regarded as complete data 
or treated with interpolation method, large errors will be brought out. 
The completion method of censored life data is discussed below.  

3.1.	 Completion method of censored data

Let T1, T2, …, Tn be the lifetimes of storage system; t1, t2, …, tn be 
the start times of inspection and o(Ti) be the residual lifetime of the ith 
system. If ti is right censored or completely censored, Ii = 0; Other-
wise, if ti is left censored, Ii=1. It can be obtained that 
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Accordingly, when the failure data of the ith system is right cen-
sored, the average residual lifetime is:
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Therefore, under periodic inspection the average residual lifetime 
of the system is:
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If inspection data are discontinuous, the average residual lifetime 
is:
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where the measurable parameter set θ θ θ1 2, , , m ∈Θ  and ( )io T  are 

the implicit functions of unknown parameters, which can be solved by 
iterative algorithm [10]. Assuming that the system lifetime T has den-
sity function f ( ; )ξ Θ , the likelihood function of parameter set Θ 
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Suppose the initial value of parameter estimation is 
Θ0 1 0 2 0 0= ( ) ( ) ( ){ }θ θ θ, , , m . Insert it into Eq. (17) and the first it-

erative parameter set Θ1 1 1 2 1 1= ( ) ( ) ( ){ }θ θ θ, , , m  can be obtained. 

Circulating the iterative procedure, the kth iterative parameter set 
Θk k k m k= ( ) ( ) ( ){ }θ θ θ1 2, , ,  can also be obtained. Thereby, the 

maximum likelihood estimator set of Θ  is the convergent parameter 
set ˆ lim k

k→∞
Θ = Θ .

3.2.	 Censored data completion of Weibull & exponential 
type system

For most storage system, the lifetime obeys Weibull distribution 
or memoryless exponential distribution. Based on cumulative damage 
effect, the method to convert censored data of Weibull storage system 
into complete ones is given below. Assume that the lifetime T  has the 
density function:
	 f t t t( ; , ) ( ) expα λ λα λ λα α= −( )





−1 , 0t ≥  	 (18)

where λ, α are parameters to be estimated. The likelihood function 
under the case of the complete sample is:

Fig. 2  Reliability change of storage system under I-ABAO

ˆ



Science and Technology

345Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.14, No. 4, 2012

	 L T T T T Tn i
i

n
( , , , ; , ) ( ) exp1 2

1

1
 λ α λα λ λα α= −( )





−

=
∏ .      (19)

Therefore, the logarithmic likelihood equations are:
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If xi is left censored, it can be obtained from Eqs. (13), (15) that:
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If xi is right censored, then:
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If xi is completely censored, take Ti  as:
	 i iT x=  	 (23)

For the exponential storage system, take α = 1, then the comple-
tion of left censored data and right censored data are given as follows, 
respectively.
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4. Parameter estimation of reliability model

When the censored data have been converted into complete data, 
the estimator Θ̂  of parameter set can be obtained by iteration of Eq. 
(17). Given the distribution function ˆ( ) ( ; )F t F t= Θ , the real-time re-
liability function of storage system can be obtained as 

0
ˆ ˆ( ) [1 ( ; )]R t R F t= ⋅ − Θ .

The least square method was used to estimate the initial reliability 
in Ref. [13]. Here we take
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as the initial reliability of the system, where 0 0 0 0ˆ ( 1) ( 2)p N f N= − + +  
is the Bayes estimation of use reliability, N0 is the number of systems, 
and f0 is the failure number. For Weibull storage system, the real-time 
reliability function is:
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For the original censored data, {(Ni, Si, ti), i=1, 2, …, n} is the fail-
ure data set collected from periodic inspection, where Si is the number 
of non-failed products within Ni of total stored products at time ti. 
Supposing that the periodic inspection interval τ is a fixed time unit, 
and the maintenance time is negligible compared to the storage time, 
only parameters in Eqs. (8), (12) need to be estimated. 

For real-time reliability model under I-AGAN:
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The maximum likelihood equations involving λ0 and β are as fol-
lows:
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It can be concluded from Eq. (29) that there is no analytical solu-
tion for maximum likelihood estimation of λ0 and β. However, the 
estimates λ, β can be derived by numerical calculating method. The 
real-time system reliability is:
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For the real-time reliability model under I-ABAO:

	 R t R r k xk i
i

k
−

=

−
= − + +






















∑( ) exp exp( ) ( )0 0

1

1
λ β δ τ 	 (31)

The corresponding maximum likelihood function is:
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Then the maximum likelihood equations involving λ , δ , β  are 
as follows:
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From Eq. (33), the estimates λ0 , δ , β  of λ0 , δ , β  can be derived 

by Newton’s iteration method. The real-time system reliability is:
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5. Case study

In this section, a storage system composed of 18 subsystems is 
considered. It is maintained every other year to keep its availability. 
Compared with the storage time, the time consumed by maintenance 
is negligible. Those subsystems which have serious failure or have 
no value for maintenance will be withdrawn from storage, while oth-
ers will be restored to storage state. Maintenance will continue until 
all the subsystems are withdrawn from storage. The detailed data are 
shown in Table 1.

The reliability analysis of the system under I-AGAN and I-ABAO 
is showed as below.

5.1.	 Reliability function of Weibull & exponential type sys-
tem

At the beginning of storage, all the 18 subsystems satisfy mission 
reliability. According to Eq. (25), the initial storage reliability R0 is:

	

0
0

0

11ˆ min 1, (1 ) 0.975
2 2

SR
N

 +
= + = +  .	

Rearrange the data in Table 1 on a monthly basis by left-censored 
data (denoted as x−), right-censored data (denoted as x+), and com-
plete data (denoted as x): { 36+, 36+, 84+, 84+, 84+, 96+, 120+, 132-, 
144+, 156+, 156+, 156+, 156+, 156, 180+, 204+, 204+, 228+ }.

If the storage lifetime obeys Weibull distribution, the complete 
lifetime data of the storage system Ti (month) are derived from Eqs. 
(21), (22), (23), as shown in the sequence: {248, 248, 262, 262, 262, 
267, 278, 126, 291, 298, 298, 298, 298, 156, 312, 327, 327, 343}. In-
serting it into Eq. (20), parameter estimators with a precision of 10-5 
are obtained: α=2.08998, λ=0.00363. The real-time reliability func-
tion with complete lifetime data is:

	 2.08998( ) 0.975exp (0.00363 )R t t = −  	 (35)

If the storage lifetime obeys exponential distribution, the com-
plete lifetime data Ti (month) are derived from Eq. (24), as shown in 
the sequence:{1239, 1239, 1287, 1287, 1287, 1299, 1323, 126, 1347, 
1359, 1359, 1359, 1359, 156, 1383, 1407, 1407, 1431}. The estimator 
of parameter λ is: 
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So the real-time reliability function with the complete lifetime 
data is: 
	 ( )( ) 0.975 exp 0.00083126  R t t= ⋅ − 	 (36)

Fig. 3 illustrates the reliability change of Weibull type system and 
exponential type system.

From Fig. 3, it can be concluded that the degradation of Weibull 
type system is slower than that of exponential type, and exponential 
type appears more sensitive than Weibull type. However, as time 
goes by, exponential type exhibits higher physical strength and its 
mechanical behavior changes slower compared with Weibull type. 
Under a certain maintenance strategy, exponential type system keeps 
higher reliability within 20 years’ storage period, while the reliability 
of Weibull type will be lower than 0.8 and enter into a low reliability 
area after 10 years. 

In the next section, we choose exponential type system to verify 
the effectiveness of the proposed completion method and models un-
der I-AGAN and I-ABAO. 

5.2.	 Reliality analysis under I-AGAN

Based on the original exponential censored data (Table 1), when 
I-AGAN is adopted, the estimator of parameter λ0 and β in Eq. (30) 
can be obtained using numerical analysis and iterative method: 
λ=0.003865, β=0.1102. Therefore, the real-time reliability under I-
AGAN can be expressed as:

( ) 0.975exp 0.003865exp 0.1102 [ ] 12 [ ]
12 12
t tR t t    = − ⋅ ⋅ − ⋅        

  (37)

where [·] represents rounding down.
To validate the effectiveness of the estimation model, reliability 

curves drawn according to Eqs. (36), (37) are shown in Fig. 4.

Table 1. Recorded data of 18 subsystems under periodic inspection

Year
(ti)

Total storage
(Ni)

Non-failures
(Si)

Cumulated
withdrawals (Fi)

1 18 18 0

2 18 18 0

3 18 16 2

4 16 16 2

5 16 16 2

6 16 16 2

7 16 13 5

8 13 12 6

9 12 12 6

10 12 11 7

11 11 10 8

12 10 9 9

13 9 4 14

14 4 4 14

15 4 3 15

16 3 3 15

17 3 1 17

18 1 1 17

19 1 1 17

20 1 0 18

Fig. 3. Real-time reliability with complete lifetime data
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It can be concluded from Fig. 4 that during storage under I-AGAN, 
the reliability of exponential system decreases progressively faster 
over time, which accords with engineering practice. Within the first 
10 years, the system keeps a reliability higher than 0.85, and within 19 
years, the reliability still remains higher than 0.7. 

5.3.	 Reliality analysis under I-ABAO

When I-ABAO is adopted, based on the data in Table 1 and Eq. 
(33), estimator of parameter λ0, δ, β in Eq. (34) can be obtained using 
iterative method: λ0=0.001098, β=0.2015, δ=0.000384.Therefore, the 
real-time reliability under I-ABAO is expressed as:

( ) 0.975exp 0.001098exp 0.2015 [ ] 12 [ ] 0.000384
12 12
t tR t t t    = − ⋅ ⋅ − ⋅ −        

(38)

where [·] represents rounding down.
Reliability curves drawn according to Eqs. (36), (38) are shown 

in Fig. 5.
In Fig. 5, the reliability of exponential system under I-ABAO has 

similar downtrend with that under I-AGAN. Within the first 10 years 
of storage, the system keeps a reliability higher than 0.80. However, 
after 10 years, the reliability enters into a low reliability area or even 
fails. Compared with Fig. 4, I-AGAN can keep higher reliability. 

Fig. 4 and Fig. 5 show the comparison between the reliabil-
ity curves obtained from complete data and censored data under I-

AGAN, I-ABAO respectively. The results show they share the simi-
lar downtrend and they are in accordance with engineering practice, 
which verifies the effectiveness of the proposed completion method 
and models. 

6. Conclusion

In this paper, we develop two forecast models for real-time reli-
ability of storage system under two repair modes. A completion meth-
od is also proposed to convert censored data into complete data by 
averaging the residual lifetimes. The case study shows that the system 
reliability estimated using the complete data shares similar changing 
trend with that using directly recorded censored data. The result veri-
fies the feasibility of the proposed completion method and the effec-
tiveness of the two models. For systems in long-time storage state 
under periodic inspection, the real-time reliability can be effectively 
estimated by applying the forecast models proposed in this paper.

In this article, it is assumed that the repair cycle is a fixed value. It 
should be interesting to carry out further studies on the unfixed repair 
cycle. Furthermore, if it is difficult to identify a suitable theoretical 
distribution for an application, a nonparametric approach can be em-
ployed to estimate the probability distribution based on the periodic 
inspection data.

Fig. 4 Real-time reliability with censored data under I–AGAN
Fig. 5 Real-time reliability with censored data under I–ABAO
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