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INCORPORATING PRODUCT ROBUSTNESS LEVEL 
IN FIELD RETURN RATE PREDICTIONS

PRZEWIDYWANIE RZECZYWISTEGO WSKAŹNIKA ZWROTÓW TOWARU 
Z UWZGLĘDNIENIEM POZIOMU ODPORNOŚCI PRODUKTU

Reliability and return rate prediction of products are traditionally achieved by using stress based standards and/or applying accel-

erated life tests. But frequently, predicted reliability and return rate values by using these methods differ from the field values. The 

primary reason for this is that products do not only fail due to the stress factors mentioned in the standards and/or used in acceler-

ated life tests. There are additional failure factors, such as ESD, thermal shocks, voltage dips, interruptions and variations, quality 

factors, etc. These factors should also be considered in some way when predictions are made during the R&D phase. Therefore, a 

method should be used which considers such factors, thus increasing the accuracy of the reliability and return rate prediction. In 

this paper, we developed a parameter, which we call Robustness Level Factor, to incorporate such factors, and then we combined 

this parameter with traditional reliability prediction methods.  Specifically, the approach takes into account qualitative reliability 

tests performed during the R&D stage and combines them with life tests by using Artificial Neural Networks (ANN). As a result, the 

approach gives more accurate predictions compared with traditional prediction methods. With this prediction model, we believe 

that analysts can determine the reliability and return rate of their products more accurately.

Keywords: reliability and return rate estimation, artificial neural networks, defining different failure types, prod-

uct maturity level, product robustness level, field failures, product level testing, board level testing, 

design quality.

Niezawodność i wskaźniki zwrotów towaru przewiduje się tradycyjnie przy użyciu norm obciążeniowych i/lub stosując przyspie-

szone badania trwałości. Jednakże, często wartości niezawodności i wskaźnika zwrotów przewidywane za pomocą tych metod 

różnią się od ich wartości rzeczywistych. Główną tego przyczyną jest fakt, że produkty nie ulegają awarii wyłącznie pod wpływem 

czynników obciążeniowych wymienianych w normach i/lub wykorzystywanych w przyspieszonych badaniach trwałości. Istnieją 

dodatkowe czynniki wpływające na intensywność uszkodzeń, takie jak wyładowania elektrostatyczne, wstrząsy termiczne, spadki, 

przerwy w dostawie i zmiany napięcia, czynniki jakościowe, itp. Te czynniki także powinny być w jakiś sposób uwzględnione przy 

dokonywaniu predykcji na etapie badań i rozwoju (R&D). Dlatego też zwiększenie trafności predykcji niezawodności i wskaźników 

zwrotów towaru wymaga metody, która uwzględniałaby tego typu czynniki. W niniejszej pracy opracowaliśmy parametr, nazwany 

przez nas "czynnikiem poziomu odporności", który pozwala na uwzględnienie takich czynników, a następnie wykorzystaliśmy ów 

parametr w połączeniu z tradycyjnymi metodami przewidywania niezawodności. W szczególności, przedstawione podejście bie-

rze pod uwagę jakościowe badania niezawodnościowe wykonywane na etapie R&D łącząc je z badaniami trwałościowymi przy 

użyciu sztucznych sieci neuronowych ANN. Dzięki temu, w podejściu tym uzyskuje się bardziej trafne predykcje niż w tradycyjnych 

metodach prognozowania. Jesteśmy przekonani, że użycie powyższego modelu predykcyjnego umożliwi analitykom bardziej trafne 

wyznaczanie niezawodności oraz wskaźników zwrotów wytwarzanych przez nich produktów.

Słowa kluczowe: ocena niezawodności i wskaźnika zwrotów produktu, sztuczne sieci neuronowe, definiowanie 

różnych typów uszkodzeń, poziom dojrzałości produktu, poziom odporności produktu, awarie 

w warunkach rzeczywistych, badania na poziomie produktu, badania na poziomie płyty testo-

wej, jakość konstrukcyjna.

1. Introduction

Consumer electronics reliability has become a major concern for 

manufacturers in recent years, as consumer electronics prices have 

dropped quite dramatically. The cost of warranty failure support has 

become a greater percentage of the profit margin. In Europe, the av-

erage cost per failure, including logistics costs, is greater than $150 

[13]. Due to this, manufacturers strive to increase the reliability of 

their products in order to decrease service costs. On the other hand, 

this improvement causes an increase on design and manufacturing 

cost. 

Companies attempt to reach to the optimum reliability value point, 

which can only be reached with an accurate reliability and return rate 

estimation. This estimation should be performed in the R&D stage, 

prior to mass production. System designers need reliability informa-

tion during the design phase, to determine the initial, maintenance and 

total system costs, as well as system-level reliability and availability 

[5] to perform design changes if needed.
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In addition to this, with accurate return rate estimation companies 

can determine the number of spares to be produced for their services, 

determine the size of the stock area for spares and also estimate their 

risk when a product is introduced into market earlier than planned. 

Various methods and standards are available for predicting reli-

ability and return rate [4, 6, 8, 10, 12], such as stress based standards 

which are widely used. Stress based standards, like MIL-HDBK-

217F, mainly define the reliability and failure rate of components 

according to the stress levels on the components. Defined stress fac-

tors are temperature, voltage and power dissipation [3]. Additionally, 

many companies perform accelerated life tests at higher stress and 

usage rates [15] and analyze the test data with statistical distributions. 

To accelerate the failure mechanism; temperature, relative humidity, 

voltage, temperature cycling and vibration are typically used in elec-

tronics as the stress factors [1]. The results of these tests are then used 

to perform reliability predictions under field stress conditions. But 

frequently, predicted reliability and return rate values by using stress 

based standards or utilizing accelerated life tests turn out to be signifi-

cantly different from the actual reliability and return rate value in the 

field [7]. One reason for this is that sufficient number of samples/pro-

totypes for testing cannot be afforded therefore, accelerated life tests 

are performed with small sample sizes [11], thus increasing the uncer-

tainty of the predictions. In addition, and in our experience, another 

significant reason is that the stress factors considered in the standards 

and used in accelerated life tests are not the only contributors to fail-

ures observed in the field during the life period of the product. For 

example, some additional failure factors for a consumer electronics 

product can be:

Electro Static Discharge,• 

Inrush Current,• 

Voltage Dips-Interruptions-Variations,• 

Lightning/Surge Voltages,• 

Loose Plugs etc. • 

During development phase, there is a variety of qualitative tests 

performed to consider the above mentioned failure factors. However, 

the outcome of such tests is not considered in the final reliability pre-

dictions. Therefore, a method which would consider the outcome of 

such tests and combine them with the other prediction methods (e.g. 

accelerated life tests) is needed.

In this paper, a unique approach for determining reliability and 

field return rate in R&D phase is presented, by introducing a new 

parameter called Robustness Level Factor (RLF a.k.a. maturity level 

[14]). This new parameter is obtained by applying a set of electri-

cal, environmental and mechanical tests in R&D phase and prior to 

mass production. This set of tests typically simulates different stress 

factors and failure mechanisms faced in the field, which are not life/

durability related. These set of tests may also include approval and 

validation tests at both board and product level. Once the Robustness 

Level Factor is obtained, Artificial Neural Networks (ANN) is used to 

combine this parameter with traditional predictions. To demonstrate 

the methodology and the accuracy of the model, a real life case study 

on 4 LCD TFT TV projects is given.

2. Determination of the Robustness Level Factor

To determine the Robustness Level Factor (RLF), a set of tests 

which will simulate the non-life related failure modes which are pos-

sible in the field should be created, i.e. robustness tests. These tests 

should be determined according to type, specification, usage condi-

tions, etc., of the product. In addition, the tests and the corresponding 

failures found should be assigned numerical values according to their 

severities in order to determine the risk of the observed failures during 

testing, relative to the robustness of the final product. These numerical 

values can be decided by analyzing field returns of similar products.

The calculation method of the RLF for an LCD TFT TV set is 

given as a real case study, to demonstrate the concept. For this prod-

uct, the test set consists of electrical, environmental and mechanical 

tests and these tests can further be grouped as pass/fail tests, early 

life period tests and design verification tests [9]. All tests have “scor-

ing points” and these points are given according to the importance of 

the tests. The importance of the tests can be decided by considering 

the specifications and usage environment, analyzing production line 

failures, field returns from similar projects etc. As an example, if a 

product is designed to operate in high temperature environments then 

a high temperature test will be assigned more scoring points. If a test 

is thought to be more effective on finding failures, then this test will 

have higher scoring points. 

In addition to this, the failures found during testing are grouped 

according to their severities, as “showstopper,” “high,” “medium,” 

and “low”. These failure severities are assigned “losing points” [2]. 

These points are also decided by analyzing field returns of similar 

projects, [9]. For example, in our application ESD (electrostatic dis-

charge) is a common failure cause (as observed in our field returns), 

thus, as we will show later, the ESD test and any failures during that 

test will be assigned high scoring points and severity.

The scoring points and the losing points affect the result of the 

prediction method. It is very important to determine the scoring points 

of the tests and the losing points of the failure severities correctly. If 

the scoring points and the losing points are determined correctly the 

results of the prediction method will be closer to the actual value. In 

our application, the scoring points and the losing points were decided 

after very long tests and analysis of service data.

In our company, we classified the different robustness tests as follows:

2.1. Pass/Fail Tests

Pass/Fail tests are also referred to as “reliability approval tests”. 

The main objective of such tests is to find major design flaws. These 

tests are performed on a product level, and usually with a small sam-

ple size. Table 1 provides a list of such tests and the associated scoring 

points used in our application.

Table 1. List of Pass/Fail Tests

Test Category Test Name
Scoring 

Points

Electrical

Voltage Current Stress Test 100

Temperature Stress Test 100

Open/Short Circuit Test 100

ESD Test 100

Surge Test 25

Lightning Test 50

Voltage Dips, Interruption and Variation Test 50

Power On/Off Test 50

Inrush Test 75

Environmental

Heat-Run Test 100

High Temperature Test 50

Low Temperature Test 50

High Humidity Life Test 50

Mechanical

Vibration Test 25

Wall Holder Strength Test 25

Drop Test 50

Total 1000
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2.2. Early Life Period Tests

Early life period (ELP) tests are performed with minimum 20 

samples, on a board level. These tests are performed to determine 

component quality problems, assembly problems, solder-joint prob-

lems and failures occurred in early life, for example infant mortality 

failures. An example of such tests used in our organization is given 

in Table 2.

2.3. Design Veri!cation Tests

Design verification tests (DVT) are not the same as the pass/fail 

tests mentioned above. These tests provide feedback to designers 

about the weakest points of the design. DVTs are performed with large 

sample sizes and at a product level, where the test period is longer 

than pass/fail tests. The main purpose of DVTs is to determine minor 

design problems. In addition, in these tests combined stress factors are 

used to accelerate failure mechanism. The list of design verification 

tests and corresponding scoring points used in our company is given 

in Table 3.

2.4. Total Scoring Points and Losing Points

After the scoring points of the tests are decided, total scoring 

points are obtained

Then, the “losing points” of the failure severities are determined. 

As mentioned above, these losing points are decided based on field 

experience and criticality of the failure based on design specifica-

tions.

When the severities of the failures are decided, total losing points 

of the project can be calculated from equation (1).

 TLP A S B H C M D L= ⋅ + ⋅ + ⋅ + ⋅( ) ( ) ( ) ( )  (1)

TLP: Total Losing Points

A: Number of “Showstopper” Failures

B: Number of “High” Failures

C: Number of “Medium” Failures

D: Number of “Low” Failures

2.5. Calculation of the Robustness Level Factor, RLF 

By using equation (2), the parameter, “Robustness Level Factor” 

(RLF), is calculated.

 RLF
TLP

TSP
= −1  (2)

RLF: Robustness Level Factor

TLP: Total Losing Points

TSP: Total Scoring Points

Robustness Level Factor is a number between 0 and 1. This pa-

rameter expresses the robustness of the final product related to the 

failure causes mentioned above. With this parameter, we will attempt 

to predict the reliability and the return rate of the final product by 

combining it with life test results and predictions.

3. Combining RLF with life predictions

At this point, the challenge is to combine the computed Robust-

ness Level Factor with predictions made from life tests. As mentioned 

previously, the motivation is to consider these qualitative failures in 

our predictions since they represent possible failures in the field. Fail-

ing to consider the design robustness in any predictions could result in 

less accurate estimations. Since the RLF is a qualitative factor (i.e. it 

does not represent an actual probability) it cannot be easily related to 

field failures. In order to so, we chose ANN, where a relationship be-

tween RLF and life test predictions vs. actual field return rate (based 

on past projects) can be established/learned. In other words, from past 

projects, RLF and reliability predictions based on life tests will be the 

inputs and the actual field return rate the output, and an ANN will be 

used to “learn” the function between them. Based on the established 

function, the RLF and the life test reliability prediction of the product 

under development, we will infer its field return rate. 

In engineering and science, ANN are used whenever a function 

between inputs and outputs needs to be established, where such func-

tion is very complex to be determined with other methods or non-

applicable (e.g. linear regression). The problem under investigation of 

combining robustness tests results and life test results falls under this 

Table 2. List of Early Life Period Tests

Test Category Test Name
Scoring 

Points

Environmental

Thermal Cycling Test 75

High Temperature High Humidity Test 50

Thermal Shock Test 50

Mechanical Random Vibration Test 50

 Total 225

Table 3. List of Design Verification Tests

Test Category Test Name
Scoring 

Points

Electrical

Powered / Unpowered Temperature 
Cycling Test

100

ESD Step Stress to Failure Test 50

Environmental

Combined High Temperature 
High Humidity Test

50

Thermal Shock Test 75

Temperature Step Stress to Failure Test 50

Operational High / Low Temperature 
Humidity Test

50

High Humidity Storage Test 25

Temperature Cycle Test 50

Mechanical

Constructional Inspection Test 50

Unpackaged Shock Test 50

Random Vibration Step 
Stress to Failure Test

25

 Total 575

Table 4. Total Scoring Points 

Test Type Scoring Points

Pass / Fail Tests 1000

Early Life Period Tests 225

Design Verification Tests 575

Total Scoring Points (TSP) 1800

Table 5. Losing Points and Failure Severities 

Failure Severity Losing Points

Showstopper (S) 120

High (H) 45

Medium (M) 24

Low (L) 9
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category where no known relationship exists thus using ANN offers 

an approach to establish it

4. Reliability and return rate estimation 

Traditionally, reliability and field return rate predictions were 

made based on prediction standards (e.g. MIL-217F) and/or life test 

results. In this paper we consider accelerated life tests where samples 

are tested at different stress conditions and the results are extrapolated 

to use level stress conditions. Predicting reliability based on acceler-

ated life tests is a very useful approach; however, such predictions 

only consider life related failure mechanisms such as electromigra-

tion, thermal fatigue, corrosion, etc. In addition, predictions made un-

der this approach are sensitive to the test’s sample size. For smaller 

sample sizes this can result in high uncertainty in the predictions. 

In order to increase the accuracy in the predictions and to take 

into account the robustness level of the design, ANNs will be utilized. 

In other words, the proposed methodology aims to improve the field 

return rate prediction by taking into account the accelerated life test 

results and the RLF. ANN requires existing inputs and outputs to be 

provided and based on those a function is built. The existing inputs 

and outputs are called the “training set.” In other words, these are 

the set of values where the algorithm will learn the pattern. In our 

application, the training set will be the RLF, reliability predictions 

based on life tests and actual field returns of past projects. The higher 

the number of past projects used in the training set the more accu-

rate the relationship between inputs and outputs is expected to be. 

It should also be noted that the proposed methodology and the past 

projects used apply when making predictions for similar products and 

for products where history exists (i.e. evolutionary designs).

There are different techniques and algorithms for creating ANNs 

which are beyond the scope of this paper. In our application and since 

we only consider two inputs and one output, we used a simple single 

layer ANN. A real life case study for a LCD TFT TV set is given in 

the following section.

5. Real life case study 

A real life case study to predict reliability and 1st year field return 

rate values of 3 LCD TFT TV Set projects, with CCFL and LED pan-

els, is given by using 4 older projects’ RLF values, accelerated life 

test predictions, and actual field return rate data (Table VI). These 3 

products are currently in the field for more than a year, and their actual 

1st year return rates will be provided as a comparison to the predicted 

ones, to illustrate the applicability of the model.

In Table VI, each project number refers to a real TFT LCD TV 

product. RRALT denotes the estimated return rate (50% confidence 

level) calculated by applying accelerated life tests, 90% 1S UPPER 

RRALT denotes the 90% upper one-sided bound return rate, and RLF 

denotes “robustness level factor” calculated by applying the tests de-

scribed in Section II and using the same scoring points provided in 

that same section. AFRR denotes actual field return rate. 

There are a few observations that can be made by examining the 

information provided in Table VI. 

The upper bounds are significantly higher than the estimated 1. 

values. This is due to the small sample sizes used during the 

ALT.

The upper bounds are significantly higher than the actual field 2. 

return rates.

The estimated values (i.e. 50% confidence level) are closer to 3. 

the actual field return rates. 

One could observe that the actual field return rates are below the 

upper bound computed from the ALT analysis, which is of course the 

reason of using confidence bounds, i.e. to contain the uncertainty due 

to sample size. The statement that can be made is that we are 90% 

confident that the true field return rate will be below the upper bound. 

However, it can be seen that this bound is very conservative and addi-

tionally we need to keep in mind that it does not consider any robust-

ness related failures in the field. In other words, even though the true 

values given in Table VI are contained within the bounds, one needs 

to be careful because it is no indication that the robustness related 

failures are included in the estimation. There may very well be situ-

ations where if sufficient number of samples were tested during the 

ALT, the upper bound would be close to the estimate and could also 

be below the actual. 

We would now like to better understand the relationship between 

the ALT predictions and the robustness of the product in order to make 

more intelligent field return rate predictions. For this, we will use 

ANN as described in Section III. Table VII provides the ALT results 

and the RLF values for 3 projects currently in the field over 1 year. 

The actual field return rates are known but we will use the proposed 

methodology to estimate them and later compare them to the actual 

values.

In Table VII we can see that for Project 5 it is expected that the 

true field return rate will be below 0.66% based on the ALT analysis. 

In this project it can also be seen that the 90% upper bound is close 

to the estimated value. This is due to the fact that sufficient samples 

were tested and for sufficient duration during the development of this 

product. On the other hand, in projects 6 and 7, less time and samples 

were available during development and this is reflected in the width 

between the estimated values and the upper bounds. Based on the his-

tory of these products (these 3 products are evolutions of the previous 

4 products given in Table VI), we do not expect the actual field return 

rate to be as high as predicted by 90% upper bound estimates. In ad-

dition, our robustness tests have shown that the robustness of these 3 

products is high as reflected in the RLF values. 

To summarize, we have high confidence in the prediction for 

project 5 and the actual field return rate is expected to be close to this 

prediction. However, we need to keep in mind that this prediction 

does not take into account any robustness related failures which may 

occur in the field. On the other hand, we are more uncertain about the 

ALT predictions for projects 6 and 7 and we believe (based on history) 

that the actual field return rate should be less than these predictions, 

which also do not include robustness related failures. Finally, all 3 

projects have quite high RLF values thus we expect less robustness 

related failures in the field.

Table 6. RLF values, accelerated life test results and actual fiedl return rate values

Project RR
ALT

 (%)
90% 1S UPPER RR

ALT
 

(%)
RLF AFRR (%)

1 4.00 7.98 0,6494 4.19

2 1.82 9.26 0.8275 2.60

3 0.26 4.60 0.9360 0.87

4 2.83 11.75 0.8950 1.57

Table 7. RLF values and accelerated life test results

Project RRALT (%)
90% 1S UPPER 

RRALT (%)
RLF

5 0.48 0.66 0.9100

6 0.46 19.55 0.8856

7 1.21 13.73 0.9100
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5.1. Analysis and results  

To apply the methodology described in section III, we will use the 

values provided in Table VI as the “training set” for the ANN algo-

rithm. Based on this training set, the ANN will create a relationship 

between the inputs which are the ALT estimates and the RLF values, 

and the output which is the AFRR. We will use the 90% upper confi-

dence bound estimate as the ALT input since it provides an estimate 

which contains the uncertainty of the result. 

An ANN was created using the training set described above. We 

used a single layer ANN with 0 neurons in hidden layers, a minimum 

weight delta of 0.0001, a learning rate of 0.3, and a zero-based Log-

sigmoid-function for the activation function. Based on this ANN and 

the training set of Table VI, the field return rate of the 3 projects with 

inputs given Table VII was predicted, and is given in Table VIII.

The following observations can be made from the results of Table 

VIII;

The predicted field return rate for Project 5 is higher than the 1. 

90% upper bound value based on ALT analysis. This outcome 

is actually reasonable, since, as we mentioned previously, the 

ALT does not consider any robustness related failures where 

in the field we do expect to see such failures. 

For projects 6 and 7 the predicted field return rates are much 2. 

lower than the 90% upper bound value based on ALT analy-

sis. This is also a reasonable outcome as these projects have 

historically much less failures than what was predicted by the 

ALT analysis and in addition, they also have a high RLF val-

ue which implies consistency and/or improvement over past 

projects thus similar expectations regarding robustness related 

failures.

5.2. Comparison of predictions with actual !eld return rates  

As mentioned before, these 3 products are already in the field for 

more than a year. To illustrate the accuracy of the proposed model and 

prediction, the actual field returned rates (as obtained from our service 

department) are given in Table IX and are compared to the predicted 

values in Table VIII.

As it can be seen from Table IX, the results of the predicted field 

return rate values by using proposed method are very close to the 

actual field return rate values and thus more realistic.

6. Conclusions

Reliability and return rate predictions are currently performed 

mainly by using stress based standards or applying accelerated life 

tests. However, these methods may not capture every failure reason 

seen in the field, and specifically robustness related failures. In addi-

tion, there is typically a variety of robustness tests performed during 

development whose outcome indicates the likelihood of observing 

such failures in the field. Traditionally, the lessons learned and the 

outcomes of these tests are not taken into consideration when field 

predictions are performed. It is reasonable to assume that such infor-

mation regarding a product’s robustness should have an influence on 

the field return rate. For these reasons, we first proposed a parameter 

to quantify a product’s robustness, RLF, using scoring points for the 

different robustness tests (as described in section II), and we then used 

this parameter in conjunction with life test results in order to make 

more realistic field return rate predictions. To do so, we used infor-

mation from past projects and Artificial Neural Networks in order to 

create a relationship between the life test results, the RLF and the 

actual field return rate. The choice of ANNs as a technique was based 

on the fact that we are not certain about the form of the relationship 

between these inputs and the output, which could also vary by the 

application, the product, the historical information, etc. Thus, ANNs 

provide a general approach which can be used in a variety of products 

and industries. 

The methodology has been used internally in our company and 

has been proved to be a very useful approach by providing more re-

alistic predictions, which was also demonstrated in this paper by the 

provided case study. Further utilization of this approach by other in-

dustries or reliability engineers would be helpful in order to determine 

its applicability and value. It should also be noted that our presented 

approach is an attempt to consider this very real case of including 

information regarding the robustness of a product and in general any 

type of qualitative information and test results in the final field return 

rate prediction. We hope that this approach can also generate interest 

in this topic and provide stimulation for further research. In fact, the 

authors are currently also considering other approaches such as the 

use Bayesian statistics. The research is in its early stages thus no com-

parisons and results could be reported at the time of this writing.

Table 8. Predicted field return rate values

Predicted Field Return Rate Values (%)

PFRR5 0.929

PFRR6 2.277

PFRR7 1.459

Table 9. Actual and predicted 1st year field return rate values

Project
Predicted Field Return 

Rate (%)
Actual Field Return Rate

5 0.929 1.19

6 2.277 1.14

7 1.459 1.47
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