Identyfikatory
Warianty tytułu
Analiza niezawodnościowa konstrukcji z wykorzystaniem teorii zbiorów rozmytych
Języki publikacji
Abstrakty
Prediction of structural performance is a complex problem because of the existence of randomness and fuzziness in engineering practice. In this area, reliability analyses have been performed using probabilistic methods. This work investigates reliability analysis of structure involving fuzziness and randomness. In particular, the safety state of the structure is defined by a fuzzy state variable, fuzzy random allowable interval, or fuzzy random generalized strength. Because the membership function of the fuzzy safety state is the key to structural reliability analysis using the fuzzy sets theory, this work proposes useful methods to determine the membership functions and develops a structural reliability analysis method based on the fuzzy safety state. Several examples are provided to illustrate the proposed methods.
Przewidywanie zachowania konstrukcji stanowi złożone zagadnienie ze względu na istnienie w praktyce inżynierskiej losowości i rozmytości. Na tym obszarze, analizy niezawodnościowe prowadzono dotąd przy pomocy metod probabilistycznych. W niniejszej pracy przedstawiono metodę niezawodnościowej analizy konstrukcji uwzględniającą rozmytość i losowość. Dokładniej, stan bezpieczeństwa konstrukcji określano za pomocą rozmytej zmiennej stanu, rozmytego losowego przedziału dozwolonego lub rozmytej losowej uogólnionej wytrzymałości. Ponieważ funkcja przynależności rozmytego stanu bezpieczeństwa stanowi klucz do niezawodnościowej analizy konstrukcji wykorzystującej teorię zbiorów rozmytych, w niniejszej pracy zaproponowano przydatne metody wyznaczania funkcji przynależności oraz opracowano metodę niezawodnościowej analizy konstrukcji opartą na rozmytym stanie bezpieczeństwa. Zaproponowane metody zilustrowano kilkoma przykładami.
Czasopismo
Rocznik
Tom
Strony
284--294
Opis fizyczny
Biblogr. 32 poz.
Twórcy
autor
- School of Mechanical, Electronic, and Industrial Engineering University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan, 611731 P. R. China, hzhuang@uestc.edu.cn
Bibliografia
- 1. Blockley D I. The nature of structural design and safety. Chichester: Ellis horwood, 1980.
- 2. Blockley D I. Aprobabilistic paradox. Journal of Engineering Mechanics 1980; 106(EM6): 1430-1433.
- 3. Blockley D I. Risk based structural reliability methods in context. Structural Safety 1999; 21: 335-348.
- 4. Brown C B. A fuzzy safety measure. Journal of the Engineering Mechanics Division 1979; 105(5): 855–872.
- 5. Chou K C, Yuan J. Fuzzy-Bayesian approach to reliability of existing structures. J. Struct. Engrg. 1993; 119: 3276-3290.
- 6. Huang H Z, An Z W. A discrete stress-strength interference model with stress dependent strength. IEEE Transactions on Reliability 2009;58(1): 118–122.
- 7. Huang H Z. Reliability analysis method in the presence of fuzziness attached to operating time. Microelectronics and Reliability 1995;35(12): 1483–1487.
- 8. Huang H Z, Wang Z L, Li Y F, Huang B, Xiao N C, He L P. A non-probabilistic set model of structural reliability based on satisfaction degree of interval. Mechanika 2011; 17(1): 85–92.
- 9. Huang H Z, Tong X, Zuo M J. Posbist fault tree analysis of coherent systems. Reliability Engineering and System Safety 2004; 84(2): 141–148.
- 10. Huang H Z, Zuo M J, Sun Z Q. Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets and Systems 2006; 157(12): 1674–1686.
- 11. Huang H Z, Li H B. Perturbation finite element method of structural analysis under fuzzy environments. Engineering Applications of Artificial Intelligence 2005; 18(1): 83–91.
- 12. Kapur K C, Lamberson L R. Reliability in Engineering Design. New York: John Wiley & Sons, 1977.
- 13. Knight Ridder/Tribune Business News. The nature of Colombia, Challenger shuttle disasters differ. The Dallas Morning News, April 9, 2003.
- 14. Liu Y, Qiao Z, Wang G Y. Fuzzy random reliability of structures based on fuzzy random variables. Fuzzy Sets and Systems 1997; 86: 345-355.
- 15. Moller B, Graf W, Beer M. Safety assessment of structures in view of fuzzy randomness. Computers and Structures 2003; 81: 1567-1582.
- 16. PBI Media, LLC. Pair of mechanical failures caused engine damage on E-4B. C4I NEWS, June 10, 2004.
- 17. Pugsley A G. The prediction of the proneness to structural accidents. Structural Engineer 1973; 51(3): 195-196.
- 18. Savchuk V P. Estimation of structures reliability for non-precise limit state models and vague data. Reliability Engineering and System Safety 1995; 47(1): 47–58.
- 19. Savoia M. Structural reliability analysis through fuzzy number approach, with application to stability. Computers and Structures 2002, 80: 1087–1102.
- 20. Schueller G I, Bucher C G, Baurgund U, Ouypornprasert W. On efficient computational schemes to calculate structural failure probabilities. Probabilistic Engineering Mechanics 1989; 4: 10–18.
- 21. Shiraishi N, Furuta H. Reliability analysis based on fuzzy probability. J. Engrg. Mech. 1983; 109: 1445–1459.
- 22. The McGraw-Hill Companies, Inc. CH-149 damage will have no impact on US101 bid. Aerospace Daily & Defense Report, October 21, 2004.
- 23. Tsukamoto Y, Tarano T. Failure diagnosis by using fuzzy logic. Proc. IEEE Conf. on Decision Making and Control, 1977: 1390–1395.
- 24. Wang Z L, Huang H Z, Du X. Optimal design accounting for reliability, maintenance, and warranty. Journal of Mechanical Design, Transactions of the ASME 2010; 132 (1): 011007-1-011007-8.
- 25. Wang Z L, Huang H Z, Liu Y. A unified framework for an integrated optimization model under uncertainty. Journal of Mechanical Design, Transactions of the ASME 2010; 132(5): 051008-1-051008-8.
- 26. Wang Z L, Li Y F, Huang H Z, Yu Liu. Reliability analysis of structure for fuzzy safety state. Intelligent Automation and Soft Computing 2012; 16(3): 215–242.
- 27. Wang G Y. Theory of soft design in engineering. Beijing: Science Press, 1992.
- 28. Wu W J, Huang H Z, Wang Z L, Li Y F, Pang Y. Reliability analysis of mechanical vibration component using fuzzy sets theory. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012, 14(2): 130–134.
- 29. Yao J T P. Damage assessment of existing structures. Journal of the Engineering Mechanics Division 1980; 106(4): 785-799.
- 30. Zadeh L A. Probability measures of fuzzy events. J. Math. Anal. App1. 1968; (10): 421–427.
- 31. Zadeh L A. The concept of linguistic variable and its application to approximate reasoning. Information Science 1975; 8: 199-249; 8: 301-357; 9: 43–80.
- 32. Zhang X L, Huang H Z, Wang Z L, Xiao N C, Li Y F. Uncertainty analysis method based on a combination of the maximum entropy principle and the point estimation method. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2012, 14(2): 114–119.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0004-0020