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Reliability allocation using pRobabilistic analytical taRget 
cascading with efficient unceRtainty pRopagation

alokacja niezawodności z wykoRzystaniem pRobabilistycznej 
metody analitycznego kaskadowania celów 

zapewniająca wydajną pRopagację niepewności
Analytical target cascading (ATC) provides a systematic approach in solving reliability allocation problems for large 
scale system consisting of a large number of subsystems, modules and components. However, variability and uncertainty 
in design variables (e.g., component reliability) are usually inevitable, and when they are taken into consideration, the 
multi-level optimization will be very complicated. The impacts of uncertainty on system reliability are considered in this 
paper within the context of probabilistic ATC (PATC) formulation. The challenge is to reformulate constraints proba-
bilistically and estimate uncertainty propagation throughout the hierarchy since outputs of subsystems at lower levels 
constitute inputs of subsystems at higher levels. The performance measure approach (PMA) and the performance mo-
ment integration (PMI) method are used to deal with the two objectives respectively. To accelerate the probabilistic opti-
mization in each subsystem, a unified framework for integrating reliability analysis and moment estimation is proposed 
by incorporating PATC with single-loop method. It converts the probabilistic optimization problem into an equivalent 
deterministic optimization problem. The computational efficiency is remarkably improved as the lack of iterative process 
during uncertainty analysis. A nonlinear geometric programming example and a reliability allocation example are used 
to demonstrate the efficiency and accuracy of the proposed method.

Keywords: optimal reliability allocation, hierarchical decomposition, probabilistic analytical target 
cascading, uncertainty propagation.

Analityczne kaskadowanie celów (ATC) stanowi systematyczne podejście do rozwiązywania zagadnień alokacji nieza-
wodności dotyczących systemów wielkoskalowych składających się z dużej liczby podsystemów, modułów i elementów 
składowych. Jednakże zmienność i niepewność zmiennych projektowych (np. niezawodności elementów składowych) są 
zazwyczaj nieuniknione, a gdy weźmie się je pod uwagę, optymalizacja wielopoziomowa staje się bardzo skomplikowana. 
W prezentowanym artykule, wpływ niepewności na niezawodność systemu rozważano w kontekście formuły probabili-
stycznego ATC (PATC). Wyzwanie polegało na probabilistycznym przeformułowaniu ograniczeń oraz ocenie propagacji 
niepewności w całej hierarchii, jako że wyjścia podsystemów na niższych poziomach stanowią wejścia podsystemów na 
poziomach wyższych. Cele te realizowano, odpowiednio, przy użyciu metody minimum funkcji granicznej (performance 
measure approach, PMA) oraz metody całkowania momentów statystycznych funkcji granicznej (performance moment 
integration, PMI). W celu przyspieszenia probabilistycznej optymalizacji w każdym podsystemie, zaproponowano ujed-
nolicone ramy pozwalające na integrację analizy niezawodności z oceną momentów statystycznych poprzez połączenie 
PATC z metodą jednopoziomową (pojedynczej pętli, single-loop method). Zaproponowana metoda polega na przekształ-
ceniu probabilistycznego zagadnienia optymalizacyjnego na deterministyczne zagadnienie optymalizacyjne. Zwiększa to 
znacznie wydajność obliczeniową w związku z brakiem procesu iteratywnego podczas analizy niepewności. Wydajność i 
trafność proponowanej metody wykazano na podstawie przykładów dotyczących programowania nieliniowego geome-
trycznego oraz alokacji niezawodności.

Słowa kluczowe: optymalna alokacja niezawodności, dekompozycja hierarchiczna,  probabilistyczna 
metoda analitycznego kaskadowania celów, propagacja niepewności.

1.  Introduction

Optimal reliability design (reliability allocation) aims to deter-
mine the reliability of constituent subsystems and components so as to 
obtain targeted overall system reliability. It should be performed early 
in the design cycle to guide later tradeoff and improvement studies of 
more detailed designs. However, reliability allocation for designing 
complex system, such as structural, aerospace or automotive systems, 
is a complicated large-scale problem. Decomposition can result in 

improved computational efficiency because the formulation 
of each element typically has fewer degrees of freedom and 
fewer constraints than the all-in-once (AIO) formulation. 
Since the subsystems are coupled, their interactions need 
to be taken into consideration to achieve consistent designs. 
Zhang [20] proposed the collaborative allocation (CA) to 
deal with optimum allocation problem in aircraft concep-
tual design, which is of similar solution procedure with col-
laborative optimization (CO). However, in CA the auxiliary 
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constraints are equality constraints, and the convergence has not been 
demonstrated yet. Recently, analytical target cascading (ATC) has 
been applied successfully to a variety of reliability allocation prob-
lems [4, 11, 21]. ATC is a methodology for cascading upper level de-
sign targets to lower level while the element at the lower level tries to 
provide responses as close to these targets as possible [8]. It has a few 
features which are applicable to optimum allocation problem. Firstly, 
upper level providing lower level with targets of variables is similar 
to allocation of design requirements. Secondly, the hierarchic mul-
tilevel optimization of ATC is similar to system structure composed 
of subsystems, components and parts. Finally, by forcing the consist-
ency between each subsystem, ATC has proven to be convergent to 
the original undecomposed problem.

However, there exists uncertainty in design variables or param-
eters in the early development stage. For example, component reli-
ability estimates are often uncertain, particular for new products with 
few failure data [2]. Thus, accurate estimates of system risk should 
be sought and used in system design and trade studies. In response 
to these new requirements, the ATC formulation has been extended 
to solve probabilistic design optimization problems using random 
variables to represent uncertainty [10], and generalized with general 
probabilistic characteristics by Liu [14]. In the previously published 
probabilistic ATC (PATC) formulations, the first few moments are 
usually used as targets and responses since matching two random 
variables is not practically doable in most cases. Even with the first 
few moments, however, computing the solution is very expensive due 
to computational difficulty in estimating propagated uncertainty. An 
efficient and accurate mechanism is required for propagating probabi-
listic information throughout the hierarchy. 

The paper proceeds as follows. First, the general PATC formula-
tion is revisited in Section 2. Section 3 provides an introduction of 
existing methods for uncertainty propagation. Section 4 develops an 
efficient methodology integrating single loop method to deal with the 
issue of modeling uncertainty in multilevel hierarchies. The efficiency 
and accuracy of the proposed algorithm is demonstrated on two exam-
ples in Section 5. Finally, conclusions are presented in Section 6.

2. PATC formulation based on matching mean and va-
riance

The choice of probabilistic characteristic is an important issue in 
decomposition based system design optimization under uncertainty 
because it is not practical to match two distributions exactly. For dis-
tributions with negligible higher-order moments, matching only the 
first two moments (mean value and variance) should be sufficient. 
According to the general PATC formulation provided by Liu [14], the 
design optimization problem for element j at level i (element Oij) is 
shown in equation (1).

For a subsystem at certain level, its neighboring lower-level sub-
systems are called its children, while the neighboring upper-level sub-
system is called its parent. In equation (1), Rij and Yij are vectors of 
random responses and linking variables, respectively. Rij are evaluat-

ed using analysis or simulation models ( )( 1)1 ( 1), , , ,
ijij ij i i n ij ij+ +=R f R R X Y

. 

Targets for mean and standard deviation of Rij and Yij are assigned by 
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L . Similarly, achievable values of 

its children element responses and linking variables are passed to Oij 

as µµR( )i k+1
L , σσR( )i k+1

L  and µµY( )i k+1
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L . The design consistency 

is formulated as the first four constrains in equation (1). The optimiza-
tion problem for Oij is to find the optimum values for local design 
variables Xij, linking variables Yij and the target values for responses 
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min

s.t.

d,X
R Rd X P d X P d X

d X P

f

G

ij ij

ij m

µµ σσ( , , ), ( , , ), ,

Pr ( , , ),

( )
≥( )0 ≥≥ =

= ( )
P m Mij m

ij ij

, , ,

, ,

1

R f d X P

 (2)

where d is the vector of deterministic design variables, X is the vector 
of random design variables and P is the vector of random parameters. 
The optimization problem contains probabilistic constraints and the 
probability of success should be calculated. Besides, in a multilevel 
hierarchy, outputs of subsystems at lower levels constitute inputs of 
subsystems at higher levels. It is thus necessary to estimate the sta-
tistical moments of these outputs with adequate accuracy. This needs 
to be done for all problems at all levels of the hierarchy, and the high 
computational cost is a great challenge. 

In previous work, the Monte Carlo simulation (MCS) is used to 
calculate all the probabilistic characteristics of the responses, and all 
probabilistic constraints are simplified into the moment-matching for-
mulations [14]. However, computational time becomes a significant 
challenge. MCS may not be a practical approach for design optimiza-
tion problems that require a significant number of iterations. An ef-
fective way to improve efficiency is based on the Taylor series expan-
sions, which may introduce large approximation errors of expected 
values for the nonlinear responses [10]. Therefore, an appropriate 
uncertainty propagation method needs to be selected to achieve an 
appropriate balance between accuracy and efficiency.
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3. Uncertainty propagation methods

One of the key components of uncertainty analysis is the quantifi-
cation of uncertainties in the system output performances propagated 
from uncertain inputs, named as uncertainty propagation (UP) [12]. 
For the optimization problem in equation (2), it should be point out 
that the emphases of the two kinds of uncertainty calculation problems 
are different. One emphasizes on assessing the performance reliabil-
ity. And the other focuses on evaluating the low-order moments (mean 
and variance) of a performance. Thus, they are discussed separately.

3.1. Reliability analysis

Reliability analysis is a tool to compute the reliability index or the 
probability of failure corresponding to a given failure mode or for the 
entire system [5]. To deal with the reliability constraints in equation 
(2), the reliability index is statistically defined by a cumulative distri-

bution function 
,
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where Φ is the cumulative distribution function for standard normal 

distribution and  βt,m is the target reliability index. ( )fX,P X,P  is a 
joint probability density function (PDF), which needs to be integrat-
ed. There are two different methods for the reliability assessment: the 
reliability index approach (RIA) [16] and the performance measure 
approach (PMA) [18]. RIA uses the reliability index (equation (4)) to 
describe the probabilistic constraint in equation (3).

 β βs m G t mF
ij m, ,,

= ( )( )( ) ≥−Φ 1 0   (4)

where βs,m  is the safety reliability index for the mth probabilistic con-
straint. In RIA, the first-order safety reliability index is obtained using 
first-order reliability method (FORM). It is formulated as an optimi-
zation problem, with an implicit equality constraint in a standard U 
space defined as the limit state function.

 
( ),
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s.t. 0ij mG =

U

U
  (5)

where the vector U represents the random variables in the standard 
normal space. However, RIA may yield singularity in many reliabil-
ity based design optimization (RBDO) applications. Moreover, it is 
more efficient in evaluating the violated probabilistic constraint. If the 
probabilistic constraint is inactive, RIA often yields a low rate of con-
vergence [18]. To overcome these difficulties, PMA was developed to 
solve the RBDO problem. In this method, the reliability constraints 
are stated by an R-percentile formulation as
 ( )( ), ,Pr , , R

ij m ij mG G R≥ =d X P  (6)

Equation (6) indicates that the probability of Gij,m(d, X, P) greater 

than or equal to the R-percentile ,
R
ij mG  is exactly equal to the desired 

reliability R. Instead of calculating the probability of failure directly, 
PMA judges whether or not a given design satisfies the probabilistic 
constraint with a given target reliability index R. Therefore, the origi-
nal constraints that require the reliability assessment are now con-
verted to constraints that evaluate the R-percentile. The percentile 

,
R
ij mG  can be evaluated by the inverse reliability analysis
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3.2. Moment estimation

One purpose of statistical moment estimation stems from the ro-
bust design optimization, which attempts to minimize the quality loss, 
which is a function of the statistical mean and standard deviation [3]. 
The first two statistical moments of linking variables are estimated 
here to solve the higher-level problems and the overall multilevel de-
sign problem. Several methods are proposed to estimate the statistical 
moments of the output response. Monte Carlo simulation could be 
accurate for the moment estimation, however it requires a very large 
number of function evaluations. The first order Taylor series expan-
sion has been widely used to estimate the first and second statistical 
moments in robust design. Nevertheless, the first order Taylor series 
expansion results in a large error especially when the input random 
variables have large variations. To overcome the shortcomings ex-
plained above, numerical integrations method have been recently pro-
posed. The numerical integration methods rely on the principle that 
the first few moments of a random variable will adequately describe 
the complete PDF of the variable. The random variables are assumed 
to be statistically independent. Analytically, the statistical moments 
of the performance function H(X) can be expressed in an integration 
form as
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where fX(X) is a joint PDF of the random parameters X. The nu-
merical integration can be used either on the input domain or on the 
output domain. Since the computation of the moment could be very 
expensive through numerical integration on the input domain, a new 
formulation called performance moment integration (PMI) method is 
proposed for statistical moment calculation, which using numerical 
integration on the output domain [19]. The statistical moment calcula-
tion can be rewritten as
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where fH(h) is a probability density function of H. To approximate 
the statistical moments of H accurately, N-point numerical quadrature 
technique can be used as
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At minimum, the three-point integration is required to maintain a 
good accuracy in estimating first two statistical moments. By solving 
equation (10), three levels and weights on the output domain are ob-

tained as h h h h h h1 2 3 3 3, , , ,{ } = ( ){ }=− =+β βµX  and { } { }1 4 1
1 2 3 6 6 6, , , ,w w w = , 

respectively. Then, the mean and standard variation of the output re-
sponse are approximated to be
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In equations (11), hβ=− 3 and hβ=+ 3 can be obtained through 

inverse reliability analysis. The optimization problem used to approx-

imate hβ=− 3 can be denoted as 
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( )min

s.t. 3

h

=

U

U   (12)

The term hβ=+ 3  in equations (11) can be approximated as the 

optimal cost obtained by maximizing h(U) in equation (12). The term 
h(μX) is the performance function value at the design point.

4. Single-loop method based probabilistic analytical 
target cascading

As mentioned above, since both the reliability analysis and the 
moment estimation make use of inverse reliability analysis to get per-
centile performance, it is very natural for the two different methodolo-
gies to be treated in a unified manner. In addition, each inverse reli-
ability analysis is a separate optimization loop in the standard normal 
space. Then each subsystem optimization will be a nested, double-
loop approach, which can drastically increase the computational cost. 
To accelerate the subsystem optimization, we employ the single loop 
method that has been developed for single-disciplinary systems [13]. 
It eliminates the need for inner reliability loops without increasing the 
number of design variables by using a relation representing the Ka-
rush-Kuhn-Tucker (KKT) optimality conditions instead of solving a 
nonlinear constrained optimization problem. The single loop method 
is used to efficiently evaluate percentile performances for both mo-
ment estimation and reliability assessments in PATC. The proposed 
strategy is named PATC-SL. For the optimization problem of equation 
(7), letting R = βt,m , the following KKT optimality condition is satis-
fied at the optimal point.
 ∇ ( ) + ∇ ( ) =G Hij m. U Uλ 0  (13)

where H t mU U( ) = − β ,  is an equality constraint and λ is the corre-

sponding Lagrange multiplier. According to the geometric explana-
tion in reference [13], equation (13) states that the gradients 
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tions. This condition yields
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where α is the constraint normalized gradient in U-space. Under the 
assumption for the PATC that the random variables are normally or 
can be approximated to be normally distributed [6], Equations (14) 
yield the following relationship between the most probable point 

(MPP) mppX , mppP  and the mean µX , µP .
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where σ is the standard deviation vector of random variables X and 
random parameters P. Equations (15) hold for each constraint Gij,m of 

equation (2). Similarly, according to equation (12), hβ=± 3  are ob-

tained through reliability analysis at β = ± 3  confidence levels. The 

approximate MPP can be denoted by
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Using equations (15) and equations (16), the double-loop optimi-
zation problem in equation (2) is transformed to the following single-
loop, equivalent deterministic optimization problem.

Fig. 1. Numerical process of  single-loop method based PATC
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The single-loop method does not search for the MPP at each itera-
tion. This dramatically improves the efficiency of the single-loop 

method without compromising the accuracy. Since ααij m, is a function 

of mppX , equations (15) must be solved iteratively. That is, an itera-

tive solution is obtained, where the normalized gradient from the pre-
vious iteration is used for constraint evaluation in the current iteration. 

The vectors ααij m,  and mppX  are alternately updated until the compu-
tations converge to a final probabilistic design. The same strategy is 

used for the calculation of µµRij
 and σσRij

. Propagating uncertainty 

information during the PATC process should start at the bottom level of 
the hierarchy, where probability distribution on the input random vari-
ables and parameters are assumed as known. If such information is not 
available at the bottom level, start at the lowest level possible where it 
is available [10]. The process of PATC-SL is shown in Fig. 1.

To improve the convergence, formal methods for setting proper 
weights for element responses and linking variables can be found 
in Kim [9], Michalek [15], and Tosserams [17]. The augmented La-
grangian approach which shows stable convergence properties is used 
in this paper.

5. Numerical Examples

In this section, two examples are solved by the single-loop meth-
od based PATC. Comparing to other approaches, Performance of the 
proposed method is validated with respect to two criteria: accuracy of 
the solution and efficiency of the coordination process. For the accu-
racy comparison, the method is compared with the probabilistic all-in-
one (PAIO) formulation using MCS technique (with 10000 samples), 
denoted as PAIO-MCS [14]. For the efficiency comparison, the cur-
rent process is compared to probabilistic ATC employing linearization 
techniques (FORM and Taylor expansion), denoted as PATC-L [1].

5.1. Geometric programming problem

Geometric programming problem with polynomials is usually 
used to test the effectiveness of ATC formulations. The deterministic 
AIO and ATC formulations are provided by Kim [8]. Then it is for-
mulated in a probabilistic form to demonstrate whether the PATC is 
capale of reaching the same optimal solution[6, 14]. The PAIO prob-
lem is formulated as

Design variables X8 and X11 are assumed to be independent and 
normally distributed with constant standard deviations 
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Table. 1. Optimal solutions and number of function evaluations for example 1

PAIO-MCS PATC-L PATC-SL

X4 0.76 0.754 0.76

X5 0.86 0.855 0.86

X7 0.91 0.905 0.906

µX8 1.03 1.04 1.046

X9 0.76 0.7 0.69

X10 0.81 0.76 0.78

µX11 1.68 1.645 1.651

X12 0.84 0.923 0.824

X13 2.31 2.24 2.3

X14 2.15 2.17 2.13

E[f] 24.67 24.9 24.7

Relative error of

σ X3  
0.272% 1.05% 0.397%

Relative error of 

σ X6

0.0437% 0.177% 0.081%

Number of func-
tion evaluations 5243×10000 40599 3305

Fig. 2. Hierarchical structure of example 1
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The structure of the decomposed problem is illustrated in Fig. 2. 
The randomness in X8 and X11 results in uncertainties in all computed 
response X3, X6, each described by its mean and standard deviation. 
Note that since the standard deviation of the random design variable 
X11 is assumed constant, it is not included as a linking variable. The 
initial point is set to the deterministic optimal point, {0.76, 0.87, 0.94, 
0.97, 0.87, 0.80, 1.30, 0.84, 1.76, 1.55}.

Table 1 summarizes the results obtained from the three algo-
rithms. The optimization algorithm used is sequential quadratic pro-
gramming. The specified tolerance of consistency is 1.0×10−4. σ X3  
and σ X6  are validated via MCS with 100000 samples, and the rela-
tive errors are also displayed in Table 1. It is found that PATC-SL 
is more accuracy in estimating σ X3

 and σ X6
, and achieves better 

solutions than PATC-L. More importantly, with no nested optimiza-
tion loops, the number of function evaluations for PATC-SL is signifi-
cantly smaller than those for others. Furthermore, the average number 
of  iteration cycles of each system-level optimization using PATC-SL 
method is about 25, and the PATC-L method is around 70. Higher 
rate of convergence further improves the algorithmic efficiency. Com-
pared to PATC-L, the results show that the PATC-SL improves the 
computational efficiency by more than 12 times.

5.2. Reliability optimum allocation problem

In this section, we demonstrate the methodology for reliability 
allocation using a two-level example. The deterministic formulation 
of decomposed optimization problem is presented in reference [20]. 
Through Fig. 3 it is apparent that the system is composed of five sub-
systems and each subsystem encompasses two components.
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where R is the reliability requirement and C is the cost. Subscript ‘s’, 
‘i’ and ‘ij’ indicate corresponding value of main system, subsystem 
i and component j in subsystem i, respectively. Treating component 
reliability as uncertain parameters is necessary as they are usually 
empirically determined [7]. Then all the reliability constraints should 
be transformed into confidence-level formulation to ensure that sys-
tem reliability requirements are met with high probability. Here, the 
component reliability Rij follows a normal distribution. The standard 
deviation is assumed to be 0.005. A 95% confidence level is used for 

every system and subsystem reliability constraint. The corresponding 
PATC decomposition is shown in Fig. 4.

According to PATC, the mean and standard deviation of Ri is de-
fined as linking variables, denoted as μR,i and σR,i correspondingly. 
Auxiliary variables Ci is also introduced to calculate the total cost. 
Superscript ‘sys’ or ‘sub’ indicates the value allocated by main system 
or subsystem, respectively. Under the augmented Lagrangian ATC 
formulation [9], the consistency constraints can be incorporated into 

the objective function. λµi R , λσi R  and λi
C  denote the Lagrange mul-

tipliers associated with the deviations of μR,i, σR,i and Ci. The subsys-
tem optimization can be formulated as
find µ µ
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The means of component reliability µRi1 and µRi2  are treated as 
design variables. ATC is implemented first to find the deterministic 
optimal point, which is chosen as the initial design point of PAIO-
MCS to prevent unnecessary and expensive reliability analyses for 
infeasible and otherwise undesirable design points.

The results are listed in Table 2 for comparison, where Sij (i=1,2,…, 
5,j=1,2) represents the component j in subsystem i. It shows that, the 
deterministic results have low confidence level once the uncertainty 
of the input variables is considered. With confidence-level constraints, 
both PAIO-MCS and PATC-SL improve the probability of meeting 
the reliability requirements. The accuracy of PATC-SL is excellent 
for this example as well. Fig. 5 shows the iteration histories for main 
optimization of ATC and PATC-SL. The efficiency of PATC-SL is 
comparable to the deterministic optimization.

11R 12R 21R 22R
31R

32R
41R

42R
51R

52R

Fig. 3. The topology structure of system in the example 2

Fig. 4. The PATC-decomposed formulation of the reliability allocation prob-
lem
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6. Conclusions

The estimation uncertainty of component reliability is considered 
in this paper. To deal with the issue of modeling uncertainty propaga-
tion in multilevel hierarchies, PMA and PMI are investigated in the 

paper. A new PATC framework is developed by combining the single 
loop method with the uncertainty propagation techniques to solve the 
reliability allocation problem under uncertainty. Compared with the 
previous methods, the new approach requires no nested optimization 
loop. This makes it extremely efficient. Through the present study, it 
is shown that:

Compared to the all-in-one (AIO) method with MCS, The ac-1) 
curacy of the proposed PATC-SL formulation is demonstrated. 
The single-loop method based PATC can be useful for many 
nonlinear engineering systems.
Compared to PATC-L and ATC, the efficiency of PATC-SL is 2) 
validated. Its efficiency is almost equivalent to deterministic 
optimization.
Evaluating system reliability in a probabilistic approach is 3) 
meant to aid system architects make informed risk-based deci-
sions rather than the traditional safety factor approaches. The 
proposed PATC-SL method is more practical for engineering 
application with an acceptable accuracy and better computa-
tional. Higher efficiency can be achieved by improving the con-
vergence speed, which needs to be further studied.

Fig. 5. Optimization history for the reliability allocation problem

Table. 2. Reliability optimum allocation results for example 2

Subsystem(S1) Subsystem(S2) Subsystem(S3) Subsystem(S4) Subsystem(S5)

S11 S12 S21 S22 S31 S32 S41 S42 S51 S52

Rij 0.804 0.631 0.788 0.643 0.381 0.250 0.544 0.375 0.978 0.908

ATC Cij 0.215 0.199 0.207 0.207 0.0023 0.0014 0.006 0.003 0.146 0.095

Ri 0.507 0.51 0.535 0.715 0.998

Pr(Rs ≥ 0.999)=0.249, Cs=1.083

PAIO-MCS 0.947 0.774 0.789 0.644 0.366 0.276 0.726 0.628 0.961 0.933

Cij 0.299 0.299 0.208 0.207 0.0021 0.0017 0.017 0.016 0.105 0.122

0.733 0.508 0.56 0.928 0.997

Pr(Rs ≥ 0.999)=0.95, Cs=1.280

PATC-SL 0.929 0.788 0.741 0.686 0.341 0.274 0.881 0.385 0.950 0.948

Cij 0.288 0.310 0.183 0.235 0.0017 0.0017 0.045 0.004 0.090 0.146

0.732 0.516 0.521 0.927 0.997

Pr(Rs ≥ 0.999)=0.952, Cs=1.304
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