PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wetting of supports by ionic liquids used in gas separation processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ionic liquids were found to be selective solvents for separation of gases. They are widely used in supported ionic liquid membranes (SILMs) technology, especially in gas separation and purification processes. This work has characterized commercially available porous membranes employed in such purposes. Characterization of supports and membrane phases was carried out in order to determine factors influencing membrane stability. Scanning electron microscopy (SEM) was used to determine morphology of membrane surface. In this work wetting of the polymeric support with [Emim][TfO], [Emim][Tf2N], [Bmim][TfO] and [Bmim][Tf2N] and swelling of the membrane impregnated with ionic liquids have been investigated.
Rocznik
Strony
129--140
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
autor
autor
autor
  • Department of Chemical Technology, Chemical Faculty, Gdansk University of Technology, 80-952 Gdansk, Poland, aran@chem.pg.gda.pl
Bibliografia
  • 1. ANDERSON, J.A., DIXON, J.K., BRENNECKE, J.F., 2007, Solubility of CO2, CH4, C2H6, O2, N2 in 1-heksyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids. Acc. Chem. Res., 40, 1208–1216.
  • 2. ANTHONY, J.L., ANDERSON, J.A., MAGINN, E.J., BRENNECKE, J.F., 2005, Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B, 109, 6366–6374.
  • 3. BALTUS, R.E., CULBERTSON, B.H., DAI, S., LUO, H., W DEPAOLI D., 2004, Low-Pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. J. Phys. Chem. B, 108, 721–727.
  • 4. BARA, J.E., GABRIEL, CH. J., CARLISLE, T.K., CAMPER, D.E., FINOTELLO, A., GIN, D.L., NOBLE, R.D., 2009, Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem. Eng. J., 147, 43–50.
  • 5. BATES, E.D., MAYTON, R.D., NTAI, I., DAVIS, J.H., JR., 2002, CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc., 124, 926–927.
  • 6. CHINN, D., VU, DE Q., DRIVER, M.S., BOUDREAU, L.C., 2006, CO2 removal from gas using ionic liquids absorbents. United States Patent, US 2006/0251558 A1.
  • 7. DE LOS RIOS, A.P., HERNÁNDEZ-FERNÁNDEZ, F.J, TOMAS-ALONSO, F., PALACIOS, J.M., GOMEZ, D., RUBIO, M., VILLORA, G., 2007, A SEM-EDX study of highly stable supported liquid membranes based on ionic liquids. J. Membr. Sci., 300, 88–94.
  • 8. DE LOS RIOS, A.P., HERNÁNDEZ-FERNÁNDEZ, F.J, TOMAS-ALONSO, F., PALACIOS, J.M., VILLORA, G., 2009, Stability studies of supported liquid membranes based on ionic liquids: Effect of surrounding phase nature. Desalin., 245, 776–782.
  • 9. EARLE, M.J., SEDDON, K.R., 2000,Green solvents fot the futur. Pure Appl. Chem., 72, 1391–1398.
  • 10. FORTUNATO, R., AFONSO, C., REIS, A., CRESPO, J., 2004, Supported liquids membranes using ionic liquids: study of stability and transport mechanism. J. Membr. Sci., 242, 197.
  • 11. GAN, Q., ROONEY, D., XUE, D., THOMPSON, G., ZOU, Y., 2006, An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. J. Membr. Sci., 280, 948.
  • 12. GAN, Q., ROONEY, D., ZOU, Y., 2006, Supported ionic liquids membranes in nanopore structure for gas separation and transport studies. Desalin., 199, 535–537.
  • 13. HERNANDEZ-FERNANDEZ, F., DE LOS RIOS, A., TOMAS-ALONSO, F., PALACIOS, J., VILLORA, G., 2009, Preparation of supported ionic liquids membrane: Influence of the ionic liquid immobilization method on their operational stability. J. Membr. Sci., 341, 172.
  • 14. IZAK, P., HOVORKA, S., BARTOVSKY, T., BARTOVSKA, L., CRESPO, J.G., 2007, Swelling of polymeric membranes in room temperature ionic liquids. J. Membr. Sci., 296, 131–138.
  • 15. JOSKOWSKA, M., DEBSKI, B., LUCZAK, J., MARKIEWICZ, M., ARANOWKI, R., HUPKA, J., 2010, Determination of carbon dioxide diffusion coefficients in supported ionic liquids membranes. Przem. Chem., 89, 1189–1193.
  • 16. JOSKOWSKA, M., LUCZAK, J., ARANOWSKI, R., HUPKA, J., 2011, Use of imidazolium ionic liquids for carbon dioxide separation from gas mixtures. Przem. Chem., 90, 174–180.
  • 17. KEMPERMAN, A.J.B., BOOMGAARD, D.B.T., STRATHMANN, H., 1996, Stability of Supported Liquids Membranes: State of the Art. Sep. Purif. Techno., 31, 2733–2762.
  • 18. KOCHERGINSKY, N.M., LALITHA SEELAM, Q.Y., 2007, Recent advances in supported liquid membrane technology. Sep. Purif. Techno., 53, 71–177.
  • 19. MARSH., K.N., BOXALL, J.A., LICHTENHALL, R., 2004, Room temperature ionic liquids and their mixtures – a review. Fluid Phase Equilib., 219, 93–98.
  • 20. NAPLENBROEK, A.M., SMOLDERS, C.A., 1992, Supported liquid membranes: instability effects. J. Membr. Sci., 67, 121–132.
  • 21. PERNAK, J., 2000, Ciecze jonowe – rozpuszczalniki XXI wieku. Przem. Chem., 79, 150–153.
  • 22. SEDEV, R., 2011, Surface tension, interfacial tension and contact angles of ionic liquids. Curr. Opin. Colloid Interface Sci., article in press, doi:10.1016/j.cocis.2011.01.011.
  • 23. TAKEUCHI, H., TAKAHASHI, K., GOTO, W., 1897, Some observations on the stability of supported liquid membranes. J. Membr. Sci., 34, 19–31.
  • 24. TRONG, D., HUPKA, J., 2005, Chatacterization of porous materials by capillary rise method. Physicochem. Probl. Miner. Process., 39, 47–65.
  • 25. TRONG, D., HUPKA, J., DRZYMALA, J., 2006, Imapact of roughness on hydrophobicity of particles measured by the Washburn method. Physicochem. Probl. Miner. Process. 40, 45–52.
  • 26. ZHA, F.F., FANE, A.G., FELL, C.J.D., 1995, Instability mechanisms of supported liquid membranes in phenol transport process. J. Membr. Sci., 107, 59–107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0003-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.