PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of different methods for enhancing CO2 capture by CaO-based sorbents. Review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
CaO-based sorbent looping cycle, i.e. cyclic calcination/carbonation, is one of the most perspective technologies for CO2 capture during coal combustion and gasification processes. This study deals with different methods of enhancing CaO based sorbents activity. We also present the results of our research on the use of dolomite from Siewierz and limestone from Czatkowice. The limestone carbonation conversion in the initial cycles is worse than pure CaO, but its carbon dioxide capture parameters are better than the parameters of dolomite. Sintering appears to play a significant role in the decay of CaO-based sorbents. The annealing effect for different sorbents was investigated. Tests were performed for calcium acetate, calcium hydroxide, dolomite from Siewierz and pure CaO.
Słowa kluczowe
Rocznik
Strony
70--90
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
Bibliografia
  • 1. ABANADES, J., ALVAREZ, D., 2003,Conversion Limits in the Reaction of CO2 with Lime, Energy & Fuels, 17, 308–315.
  • 2. ABANADES, J., ALONSO, M., RODRIGUES, N., GONZÁLEZ, B., GRASA, G., MURILLO, R., 2009, Capturing CO2 from combudtion flue gases with a carbonation calcination loop, En. Procedia., 1, 1147–1154.
  • 3. ABANADES, J., MANOVIC, V., ANTHONY, E., GRASA, G., 2008, CO2 Looping Cycle Performance of a High-Purity Limestone after Thermal Activation/Doping, Energy & Fuels, 22, 3258–3264.
  • 4. ADANEZ, J., de DIEGO, L., GARCIA-LABIANO, F., 1999, Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere, Fuel 78, 583–592.
  • 5. ALONSO, M., RODRÍGUEZ, N., GONZÁLEZ, B., GRASA, G., MURILLO, R., ABANADES, J., 2010, Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development, Int. J. Greenhouse Gas Cont., 4, 167–173.
  • 6. ALVAREZ, D., ABANADES, J., 2005a, Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles, Energy & Fuels, 19, 270–278.
  • 7. ALVAREZ, D., ABANADES, J., 2005b. Determination of the critical product layer thickness in the reaction of CaO with CO2, Ind. Eng. Chem. Res. 44, 5608–5615.
  • 8. ALVAREZ, D., ABANADES, J., 2005c, Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles, Energy & Fuels, 19, 270–278.
  • 9. BANDI, A, SPECHT, M., SICHLER, P., NICOLOSO, N., 2002. In Situ Gas. Conditioning in Fuel Reforming for Hydrogen Generation., 5th Int.Symposium on Gas Cleaning at High Temperature, Morgantown
  • 10. BHATIA, S., PERLMUTTER, D., 1983, Effect of the product layer on the kinetics of the CO2–lime reaction., A. I. Ch. E. Journal 29, 79–86.
  • 11. BOUQUET, E., LEYSSENS, G., SCHÖNNENBECK, C., GILOT, P., 2009, The decrease of carbonation efficiency of CaO along calcination–carbonation cycles: Experiments and modeling, Chem. Eng. Sci., 64, 2136–2146.
  • 12. CAO, Ch., ZHANG, K., HE, Ch., ZHAO, Y., GUO, Q., 2010, Investigation into a Gas–Solid–Solid Three–Phase Fluidized Bed Carbonator to Capture CO2 from Combustion Flue Gas; Chem. Eng. Sci.; 66, 375–383.
  • 13. CHARITOS, A., HAWTHORNE, C., BIDWE, A., SIVALINGAM, S., SCHUSTER, A., SPLIETHOFF, H., SCHEFFKNECHT, G., 2011, Parametric investigation of the calcium looping process for CO2 capture in a 10kWth dual fluidized bed; Int. J. Greenhouse Gas Cont., 4, 852–859.
  • 14. CHRISSAFIS, K., PARASKEVOPOULOS, K., 2005a, The effect of sintering on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks; J. Therm. Anal. Cal., 81, 463–468.
  • 15. CHRISSAFIS, K., DAGOUNAKI, C., PARASKEVOPOULOS, K., 2005b, The effects of procedural variables on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks; Thermochimica Acta, 428, 193–198.
  • 16. FANG, F., LI, Z., CAI, N., 2009, Experiment and Modeling of CO2 Capture from Flue Gases at High Temperature in a Fluidized Bed Reactor with Ca-Based Sorbents, Energy & Fuels, 23, 207–216.
  • 17. FENNELL, P., PACCIANI, R., DENNIS, J., DAVIDSON, J., HAYHURST, A., 2007, The Effects of Repeated Cycles of Calcination and Carbonation on a Variety of Different Limestones, as Measured in a Hot Fluidized Bed of Sand, Energy & Fuels 21, 2072–2081.
  • 18. FLORIN, N., HARRIS, A., 2008a, Screening CaO-Based Sorbents for CO2 Capture in Biomass Gasifiers, Energy & Fuels 22, 2734–2742.
  • 19. FLORIN, N., HARRIS, A., 2008b, Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents, Chem. Eng. Sci., 63, 287–316.
  • 20. FLORIN, N., HARRIS, A., 2009, Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles, Chemical Engineering Science, 64, 187–191.
  • 21. GRASA, G., ABANADES, J., ALONSO, M., GONZÁLEZ, B., 2008, Reactivity of highly cycled particles of CaO in a carbonation/calcination loop, Chem. Eng. J, 137, 561–567.
  • 22. GRASA, G., GONZÁLEZ, B., ALONSO, M., ABANADES, J., 2007, Comparison of CaO-Based Synthetic CO2 Sorbents under Realistic Calcination Conditions, Energy & Fuels, 21, 3560–3562.
  • 23. GRASA, G., ABANADES, J., 2006, CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles, Industial & Engineering Chemistry Research, 45, 8846–8851.
  • 24. HUGHES, R., LU, D., ANTHONY, E., WU, Y., 2004, Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor, Ind. Eng. Chem. Res., 43, 5529–5539.
  • 25. JIA, L., ZENG, Y., ZHANG, T., 2005, Experimental Study on Pore Distribution Characters and Convert Rate of CaO, Journal of Thermal Science, 14, 87–91.
  • 26. KOGEL, J., TRIVEDI, N., BARKER, J., KRUKOWSKI S., 2006, Industrial minerals & rocks: commodities, markets, and uses, Society for Mining Metallurgy & Exploration 570.
  • 27. LI, Y., ZHAO, Ch., CHEN, H., LIANG, C., DUAN, L., ZHOU, W., 2009, Modified CaO-based sorbent looping cycle for CO2 mitigation, Fuel 88, 697–704.
  • 28. LI, Y., ZHAO, Ch., CHEN, H., DUAN, L., CHEN, X., 2010, Cyclic CO2 capture behavior of KMnO4-doped CaO-based sorbent, Fuel 89, 642–649.
  • 29. LI, Z., CAI, N., 2007, Modeling of Multiple Cycles for Sorption-Enhanced Steam Methane Reforming and Sorbent Regeneration in Fixed Bed Reactor, Energy & Fuels, 21, 2909–2918.
  • 30. LI, Z., CAI, N., HUANG, Y., 2006, Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent, Industrial & Engineering Chemistry Research 45, 1911–1917.
  • 31. LU, H., REDDY, E., SMIRNIOTIS, P., 2006, Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures, Industrial & Engineering Chemistry Research 45, 3944–3949.
  • 32. LYSIKOV, A., TRUKHAN, S., OKUNEV, A., 2008, Sorption enhanced hydrocarbons reforming for fuel cell powered generators, Int. J. Hydrogen Energy 33, 3061–3066.
  • 33. MANOVIC, V., ANTHONY, E., GRASA, G., ABANADES, J., 2008a, CO2 Looping Cycle Performance of a High-Purity Limestone after Thermal Activation/Doping, Energy & Fuels 22, 3258–3264.
  • 34. MANOVIC, V., ANTHONY, E., 2008b, Parametric Study on the CO2 Capture Capacity of CaO-Based Sorbents in Looping Cycles, Energy & Fuels, 22, 1851–1857.
  • 35. MANOVIC, V., ANTHONY, E., GRASA G., ABANADES J., 2008c, CO2 Looping Cycle Performance of a High-Purity Limestone after Thermal Activation/Doping, Fuel, 87, 3344–3352.
  • 36. MANOVIC, V., ANTHONY, E., 2008d, Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles, Env. Sci. Tech. 42, 4170–4174.
  • 37. MANOVIC, V., ANTHONY, E., LONCAREVIC D., 2009. CO2 looping cycles with CaO-based sorbent pretreated in CO2 at high temperature, Chem. Eng. Sci. 64, 3236–3245.
  • 38. MANOVIC, V., ANTHONY, E., 2007, SO2 retention by reactivated CaO-based sorbent from multiple CO2 Capture Cycles, Environ. Sci. Technol. 41, 4435–4440.
  • 39. MANOVIC, V., ANTHONY, E., 2010a, Sulfation Performance of CaO-Based Pellets Supported by Calcium Aluminate Cements Designed for High-Temperature CO2 Capture, Energy Fuels 24, 1414–1420.
  • 40. MANOVIC, V., ANTHONY, E., 2010b, CO2 Carrying behavior of calcium aluminate pellets under high-temperature/high-CO2 concentration calcination conditions, Ind. Eng. Chem. Res. 49, 6916–6922.
  • 41. MANOVIC, V., ANTHONY, E., 2010c, Lime-Based Sorbents for High-Temperature CO2 Capture—A, Review of Sorbent Modification Methods Int. J. Environ. Res. Public Health 7, 3129–3140.
  • 42. MARTAVALTZI, Ch., LEMONIDOU, A., 2008, Development of new CaO based sorbent materials for CO2 removal at high temperature, Microporous and Mesoporous Materials 110, 119–127.
  • 43. MARTAVALTZI, Ch., PAMPAKA, E., KORKAKAKI, E., LEMONIDOU, A., 2010, Hydrogen Production via Steam Reforming of Methane with Simultaneous CO2 Capture over CaO-Ca12Al14O33, Energy Fuels 24, 2589–2595.
  • 44. NIKULSHINA, V., GÁLVEZ, M., STEINFELD, A., 2007, Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle, Chemical Engineering Journal 129, 75–83.
  • 45. NIMMO, W., PATSIAS, A., HAMPARTSOUMIAN, E., GIBBS, B., FAIRWEATHER, M., WILLIAMS, P., 2004, Calcium magnesium acetate and urea advanced reburning for NO control with simultaneous SO2 reduction, Fuel, 83, 1143–1150.
  • 46. OKUNEV, A., NESTERENKO, S., LYSIKOV, A., 2008, Decarbonation Rates of Cycled CaO Absorbents, Energy & Fuels, 22, 1911–1916.
  • 47. PATSIAS, A., NIMMO, W., GIBBS, B., WILLIAMS P., 2005, Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace, Fuel, 84, 1864–1873.
  • 48. REDDY, E., SMIRNIOTIS, P., 2004, Sorption of CO2 by alkali metals doped CaO sorbents, Journal of Physical Chemistry B, 108, 7794-7800.
  • 49. SALVADOR, C., et al., 2005, Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, 5 September 2004, Vancouver, Canada 1107-1113.
  • 50. SALVADOR, C., LU, D., ANTHONY, E., ABANADES, J., 2003, Enhancement of CaO for CO2 capture in an FBC environment, Chemical Engineering Journal, 96, 187–195.
  • 51. SEO, Y., JO, S., RYU, Ch., YI, Ch., 2007, Effects of water vapor pretreatment time and reaction temperature on CO2 capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor, Chemosphere, 69, 712–718.
  • 52. SHIMIZU, T., HIRAMA, T., HOSODA, H., KITANO, K., INAGAKI, M., TEJIMA, K., 1999A, Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes, Chemical Engineering Research and Design, 77A, 62–68.
  • 53. SILABAN, A., NARCIDA, M., HARRISION, D., 1996, Characteristics of the reversible reaction between CO2 (g) and calcined dolomite, Chem. Eng. Com. 146, 149–162.
  • 54. SIRIWARDANE, R., ROBINSON, C., SHEN, M., SIMONYI, T., 2007, Novel Regenerable Sodium-Based Sorbents for CO2 Capture at Warm Gas Temperatures, Energy & Fuels, 21, 2088–2097.
  • 55. SOLIEMAN, A., DIJKSTRA, W., HAIJE, P., COBDEN, R., 2009, Brink Calcium oxide for CO2 capture: Operational window and efficiency penalty in sorption-enhanced steam methane reforming, Int. J. Greenhouse Gas Cont. 3, 393–400.
  • 56. STANMORE, B., GILOT, P., 2005, Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration; Fuel Proc. Tech., 86, 1707– 1743.
  • 57. SYMONDS, R., LU, D., MACCHI, A., HUGHES, R., ANTHONY, E., 2009, CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: Modelling and bench-scale testing, Chemical Engineering Science, 64, 3536–3543.
  • 58. WANG, J., MANOVIC, V., WU, Y., ANTHONY, E., 2010, A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes, Applied Energy, 87, 1453–1458.
  • 59. WU, S. , BEUM, T., YANG, J., KIM, J., 2007, Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor, Industrial & Engineering Chemistry Research, 46, 7896–7899.
  • 60. WU, S., UDDIN, Md., SASAOKA, E., 2005, Effect of Pore Size Distribution of Calcium Oxide High-Temperature Desulfurization Sorbent on Its Sulfurization and Consecutive Oxidative Decomposition, Energy & Fuels, 19, 864–868.
  • 61. WU, S., UDDIN, Md., NAGAMINE, S., SASAOKA, E., 2004, Role of water vapor in oxidative decomposition of calcium sulfide, Fuel, 83, 671–677.
  • 62. YONG, A., MATA, V., RODRIGUES, A., 2002, Adsorption of carbon dioxide at high temperature—a review, Sep. Pur. Technol., 26, 195–205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0003-0060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.