PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of electrolyte presence on bubble motion in solutions of sodium n-alkylsulfates (C8, C10, C12)

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Influence of sodium chloride (NaCl) addition on bubble velocity in solutions of sodium n-octylsulfate (SOS), n-decylsulfate (SDS) and n-dodecylsulfate (SDDS) was studied. The NaCl concentration was varied from 0.0001 to 0.05 M. Profiles of the bubble local velocity, that is, variations of the bubble local velocity with distance from the point of the bubble formation (capillary), were determined. At low sodium n-alkylsulfates concentrations the bubbles, after the acceleration stage, reached a maximum velocity followed by a deceleration stage tending to attain their terminal velocity. The maximum disappeared at high SOS, SDS and SDDS concentrations. Electrolyte alone did not affect the bubble velocity. However, addition of even small amounts of NaCl into solutions of sodium n-alkylsulfates affected the bubble motion. The effect was especially significant at low concentrations of the surfactants studied, where the bubble terminal velocity was lowered from ca. 30-34 cm/s (no electrolyte) down to ca. 15 cm/s in 0.01M NaCl presence. The electrolyte affected the bubble motion via its influence on state of the Dynamic Adsorption Layer formed over surface of the bubbles rising in sodium n-alkylsulfates solutions.
Rocznik
Strony
49--62
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
autor
  • J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland, nckrzan@cyf-kr.edu.pl
Bibliografia
  • 1. ADAMCZYK, Z., PARA, G., WARSZYNSKI, P., 1999, Influence of ionic strength on surface tension of cetyltrimethylammonium bromid, Langmuir 15, 8383–8387.
  • 2. ADAMCZYK, Z., PARA, G., WARSZYNSKI, P., 1999, Surface tension of sodium dodecyl sulphate in the presence of a simple electrolyte, Bull. Pol. Ac. Sci. 47 , 175–186.
  • 3. AYGOMI, F., GOMEZ, C.O., FINCH, J.A., 2007, Correspondence of gas holdup and bubble size in presence of different frothers, Int. J. Miner. Process. 83, 1–11.
  • 4. CEYLAN, K., ZEKI KUCUK, M., 2004, Effectiveness of the dense medium and the froth flotation methods in cleaning some Turkish lignites, Energ. Convers. Manag. 45, 1407–1418.
  • 5. CLIFT, R., GRACE, J.R.,. WEBER, M.E, 1978, Bubbles, Drops and Particles, Academic Press.
  • 6. DAVIES, J.T., RIDEAL, E.K., 1963, Interfacial Phenomena, Academic Press, New York.
  • 7. HU, C.Y., LO, S.L., KUAN, W.H., LEE, Y.D., 2005, Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation, Water Res. 39, 895–901.
  • 8. HU, C.Y., LO, S.L., KUAN, W.H., LEE, Y.D., 2008, Treatment of high fluorite-content wastewater by continous electrocoagulation-flotation system with bipolar aluminum electrodes, Sep. Purif. Technol., 60, 1–5.
  • 9. JACHIMSKA, B., WARSZYNSKI, P., MALYSA, K., 2001, Influence of adsorption kinetics and bubble motion on stability of the foam films formed at n-octanol, n-hexanol and n-butanol solution surface, Colloids Surf. A 192, 177–193.
  • 10. JAREK, E., JASINSKI, T., BARZYK, W., WARSZYNSKI, P., 2010, The pH regulated surface activity of alkanoic acids, Colloids Surf. A. 354, 188–196.
  • 11. KALININ, V.V., RADKE, C.J., 1996, An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces, Colloids Surf. A. 114, 337–350.
  • 12. KRZAN, M., MALYSA, K., 2002a. Profiles of local velocities of bubbles in n-butanol, n-hexanol and n-nonanol solutions,Colloids Surf. A., 207, 279-291.
  • 13. KRZAN, M., MALYSA, K., 2002b, Influence of frother concentration on bubble dimension and rising velocities, Physicochem. Problems Mineral Process. 36, 65–76.
  • 14. KRZAN, M., LUNKENHEIMER, K., MALYSA, K., 2004, On the influence of the surfactant's polar group on the local and terminal velocities of bubbles, Colloids Surf. A. 250, 431–441.
  • 15. KRZAN, M., ZAWALA, J., MALYSA, K., 2007, Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols (C5, C8) and n-alcyltrimethylammonium bromides (C8, C12, C16), Colloids Surf. A 298, 42–51.
  • 16. KRZAN, M., MALYSA, K., 2009, Influence of solution pH and electrolyte presence on bubble velocity in anionic surfactant solutions, Physicochem. Problems Mineral Process. 43, 43–58.
  • 17. LASKOWSKI, J., 1998, Frothers and Frothing in Frothing in Flotation - II. (J.Laskowski and E.T.Woodburn - Eds.), Gordon and Breach Publishers, chap.1.
  • 18. LASKOWSKI, J., 2010, A new approach to classification of flotation collectors, Can. Metall. Q., 49(4), 397–404.
  • 19. LEJA, J., 1982, Chemistry of Froth Flotation, Plenum Press, New York and London.
  • 20. MALYSA, K., KRASOWSKA, M., KRZAN, M., 2005, Influence of surface active substances on bubble motion and collision with various interfaces, Adv. Colloid Interface Sci. 114–115C: 205–225.
  • 21. MALYSA, K., ZAWALA, J., KRZAN, M., KRASOWSKA, M., 2011, Bubbles Rising in Solutions; Local and Terminal Velocities, Shape Variations and Collisions with Free Surface, Chapter 11 in: Bubble and Drops Interfaces, ISBN 9789004174955, 243–292.
  • 22. NGUYEN, A.V., SCHULZE, H.J., 2004, Colloidal Science in Flotation, Marcel Dekker.
  • 23. PARA, G., JAREK, E., WARSZYNSKI, P., 2005, The surface tension of aqueous solution of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions, Colloids Surf. A. 261, 65–73.
  • 24. RALSTON, J., DUKHIN, S.S., 1999, The interaction between particles and bubbles, Colloids Surf. A 151, 3–14.
  • 25. RUJIRAWANICH, V., CHAVADEJ, S., RUJIRAVANIT, R., 2010, Removal of trace Cd2+ using continuous multistage ion foam fractionation: Part 1 -The effect of feed SDS/Cd molar ratio, J. Hazard. Mater. 182, 812–819.
  • 26. SAM, A., GOMEZ, C.O., FINCH, J.A., 1996, Axial velocity profiles of single bubbles in water/frother solutions, Int. J. Miner. Process. 47, 177–196.
  • 27. SCHIMMOLER, B.K., LUTRELL, G.H., YOON, R-H., 1993, A combined hydrodynamic-surface force model for bubble- particle collection, XVIII Int. Miner. Process. Congress. 3, 751–756.
  • 28. WARSZYNSKI, P., BARZYK, W., LUNKENHEIMER, K., FRUHNER, H., 1998a. Surface tension and surface potential of Na n-dodecylsulfate at the air solution interface: Model and experiment, J. Phys. Chem. B 102, 10948–10957.
  • 29. WARSZYNSKI, P., WANTKE, K.-D., FRUHNER, H., 1998b, Surface elasticity of oscillating spherical interfaces, Colloids Surf. A 139, 137–153.
  • 30. WARSZYNSKI, P., LUNKENHEIMER, K., CICHOCKI, G., 2002, Effect of counterions on the adsorption of ionic surfactants at fluid−fluid interfaces, Langmuir 18, 2506–2514.
  • 31. WATCHARASING, S., KONGKOWIT, W., CHAVADEJ, S., 2009, Motor oil removal from water by continuous froth flotation using extended surfactants: Effects of air bubble parameters and surfactant concentration, Sep. Purif. Technol. 70, 179–189.
  • 32. ZAWALA, J., KRASOWSKA, M., DABROS, T. and MALYSA, K., 2007a, Influence of Bubble Kinetic Energy on its Bouncing During Collisions with Various Interfaces , Can. J. Chem. Eng. 85, 669–678
  • 33. ZAWALA, J., SWIECH, K., MALYSA, K., 2007b, A simple physicochemical method for detection of organic contaminations in water, Colloids Surf. A 302, 293–300.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0003-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.