PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of adsorption on the charge transfer reactions at the pyrite surface. Preliminary study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrochemical impedance spectroscopy was used to measure the charge transfer resistance of the reaction: Fe3+ + e- = Fe2+ and electrical double layer capacitance on pyrite electrodes of different origin both freshly polished and conditioned in the solutions of several surface active substances which may be used as potential inhibitors of the oxidation of pyrite. The following substances were used for conditioning of the pyrite samples: sodium dodecylsulfate (SDS), sodium oleate (NaOL), n-octanol (n-OA), dodecyltrimethylammonium chloride (CTACl), 2-mercaptobenzthiazole (MBT) and bis(2-etylhexyl) phosphate (D2EHP). The highest degree of adsorption, and the highest increase in the charge transfer resistance was observed for MBT, NaOL and D2EHP. Those compounds can be used as inhibitors of the pyrite oxidation.
Rocznik
Strony
19--28
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
autor
autor
Bibliografia
  • 1. AŃPERGER, S., 2003, Chemical Kinetics and Inorganic Reaction Mechanisms, Kluwer Academic, New York.
  • 2. ÅSTROM, M., SPIRO, B., 2005, Sources of acidity and metals in a stream draining acid sulfate soil, till and peat, western Finland, revealed by a hydrochemical and sulphur isotope study, Agricultural and Food Science, 14, 34–43.
  • 3. BELZILE, N., MAKI, S., CHEN, Y.-W., GOLDSACK, D., 1997, Inhibition of pyrite oxidation by surface treatment, Sci. Total Environ. 196, 177-186.
  • 4. BOMAN, A., ÅSTROM, M., FRÖJDÖ, S., 2008, Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide – The role of artificial drainage, Chemical Geology, 255, 68–77.
  • 5. BRONOLD, M., TOMM, Y., JAEGERMANN, W., 1994, Surface states on cubic d-band semiconductor pyrite (FeS2), Surf. Sci., 314, L931 L936.
  • 6. BUNGS, M., TRIBUTSCH, H., 1997, Electrochemical and Photoelectrochemical Insertion and Transport of Hydrogen in Pyrite, Ber. Bunsenges. Phys. Chem., 101,1844 1850.
  • 7. CAI, M.-F., DANG, Z., CHEN, Y.-W., BELZILE, N., 2005, The passivation of pyrrhotite by surface coating, Chemosphere 61, 659–667.
  • 8. CHMIELEWSKI, T., NOWAK, P., 1992, Impedance Characteristics of Pyrites in Relation to their Collectorless Flotation, Physicochemical Problems of Mineral Processing, 25, 59 67.
  • 9. CRAIG, J.R., VAUGHAN, D.J., 1990, Compositional and textural variations of the major iron and base-metal sulfide minerals, in: Sulfide deposits – their origin and processing (P.M.J. Gray, G.J. Bowyer, J.F. Castle, D.J. Vaughan, N.A. Warner - editors), The Institution of Mining and Metallurgy, London, 1 16.
  • 10. DOYLE, F.M., 1990, Acid mine drainage from sulfide ore deposits, in: Sulfide deposits – their origin and processing (P.M.J. Gray, G.J. Bowyer, J.F. Castle, D.J. Vaughan, N.A. Warner - editors), The Institution of Mining and Metallurgy, London, 301 310.
  • 11. ENNAOUI, A., FIECHTER, S., PETTENKOFER, CH., ALONSO-VANTE, N., BÜKER, K., BRONOLD, M., HÖPFNER, CH., TRIBUTSCH, H., 1993, Iron disulfide for solar energy conversion, Solar Energy Materials and Solar Cells, 29, 289 370.
  • 12. EVANGELOU, V.P., 1995, Pyrite Oxidation and its Control, CRC Press, Boca Raton.
  • 13. GÜLER, T., 2005, Dithiophosphinate–pyrite interaction: Voltammetry and DRIFT spectroscopy investigations at oxidizing potentials, J. Colloid Int. Sci, 288, 319–324.
  • 14. HOLMES, P.R., CRUNDWELL, F.K., 2000, The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study, Geochim. Cosmochim. Acta, 64, 263 274.
  • 15. HUANG, X., EVANGELOU, V. P., 1994, Suppression of pyrite oxidation rate by phosphate addition, in : Environmental Geochemistry of Sulfide Oxidation, ACS Symposium Series 550, 562 573.
  • 16. JAMES, F., ROOS, M., 1975, MINUIT – a system for function minimization and analysis of the parameter errors and correlations, Computer Phys. Commun., 10, 343–367.
  • 17. JIANG, C.L., WANG, X.H., PAREKH, B.K., 2000, Effect of sodium oleate on inhibiting pyrite oxidation, Int. J. Miner. Process., 58, 305 318.
  • 18. KARGBO, D. M., ATALLAH, G., CHATTERJEE, S., 2004, Inhibition of Pyrite Oxidation by a Phospholipid in the Presence of Silicate, Environ. Sci. Technol., 38, 3432 3441.
  • 19. LIBOWITZKY, E, 1993, Anisotropic pyrite: a polishing effect, Phys. Chem. Miner., 21, 97–103.
  • 20. LIPKOWSKI, J., 1992, Ion and electron transfer across monolayers of organic surfactants, in: Modern Aspects of Electrochemistry (B.E. Conway, J. O’M. Bockris , R.E. White – editors), 23, 1 99.
  • 21. LOWSON, R.T., 1982, Aqueous oxidation of pyrite by molecular oxygen, Chemical Reviews, 82, 461 497.
  • 22. MAURIC, A., LOTTERMOSER, B. G., 2011, Phosphate amendment of metalliferous waste rocks, Century Pb-Zn mine, Australia: Laboratory and field trials, Applied Geochemistry 26, 45–56
  • 23. MISHRA, K.K., OSSEO-ASARE, K., 1992, Fermi level pinning at pyrite/electrolyte junctions, J. Electrochem. Soc., 139, 749 752.
  • 24. MOORE, J.N., LUOMA, S.N., 1990, Hazardous wastes from large-scale metal extraction, Environmental Science and Technology, 24, 1278 1285.
  • 25. NESBITT, H.W., SCAINI, M., HOCHST, H., BANCROFT, G.M., SCHAUFUSS, A.G., SZARGAN, R., 2000, Synchrotron XPS evidence for Fe2+-S and Fe3+- S surface species on pyrite fracture-surfaces, and their 3D electronic states, Am. Mineral., 85, 850 857.
  • 26. NOWAK, P., 2010, Influence of Surfactant Adsorption on the Leaching of Copper Sulfides, in: Electrochemistry in Mineral and Metal Processing VIII, ECS Transactions 28(6), (F.M. Doyle, R. Woods, G.H. Kelsall - editors), The Electrochemical Society, Pennington, USA, 143–153.
  • 27. NOWAK, P., GUCWA, A., 2008, Influence of surfactant adsorption on the leaching of copper sulfides, Acta Metallurgica Slovaca, 14, 196–203.
  • 28. NOWAK, P., KOZIOŁ, B., 2002, On the Rest Potential of Pyrite Electrode in Oxygen-Free Solutions of Iron(II) sulfate, Physicochemical Problems of Mineral Processing, 36, 77 88.
  • 29. NOWAK, P, SOCHA, R.P., KAISHEVA, M.K., FRANSAER, J., CELIS, J.-P., STOINOV, Z., 2000, Electrochemical Investigation of the Codeposition of SiC And SiO2 Particles with Nickel, J. Appl. Electrochem., 30, 429 437.
  • 30. NYAVOR, K., EGIEBOR, N.O., 1995, Control of pyrite oxidation by phosphate coating, Sci. of the Total Environment, 162, 225–237.
  • 31. ÖSTERHOLM, P., ÅSTROM, M., 2004, Quantification of current and future leaching of sulfur and metals from Boreal and sulfate soils, western Finland, Australian Journal of Soil Research, 42, 547–551.
  • 32. RIMSTIDT, J.D., VAUGHAN, D.J., 2003, Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism, Geochim. Cosmochim. Acta, 67, 873–880.
  • 33. SALVADOR, P., TAFALLA, D., TRIBUTSCH, H., WENTZEL, H., 1991, Reaction mechanisms at the n-FeS2/I interface, J. Electrochem. Soc., 138, 3361 3369.
  • 34. SAND, W., JOZSA, P. – G., KOVACS, Z. – M., SĂSĂRAN, N., SCHIPPERS, A., 2007, Long-term evaluation of acid rock drainage mitigation measures in large lysimeters, Journal of Geochemical Exploration, 92, 205 211.
  • 35. SASAKI, K., TSUNEKAWA, M., TANAKA, S., KONNO, H., 1996, Suppression of microbially mediated dissolution of pyrite by originally dissolved fulvic acids and related compounds, Colloids and Surfaces A., 119, 241–252.
  • 36. SHUEY, R. T., 1975. Semiconducting Ore Minerals, Elsevier, New York.
  • 37. STRATMANN, M., FÜRBETH, W., GRUNDMAIER, G., LÖSCH, R., REINARTZ, C.R., 1995, Corrosion inhibition by adsorbed organic monolayers, in: Corrosion mechanisms in theory and practice, (P. Marcus, J. Oudar - editors), Marcel Dekker, New York, 373 419.
  • 38. TWARDOWSKA, I., SZCZEPAŃSKA, J.,WITCZAK, S., 1988, Influence of wastes from the coal mining industry on the aqueous environment, estimation of hazard, prediction and prevention, Prace i Studia 35, Ossolineum, Wrocław (in Polish).
  • 39. ZHANG, X., BORDA, M. J., SCHOONEN, M. A. A., STRONGIN, D.R., 2003, Pyrite oxidation inhibition by a cross-linked lipid coating, Geochem. Trans., 4, 8 11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0003-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.